CS 61B Asymptotic Analysis
Spring 2018 Discussion T: February 27, 2018

| Asymptotic Notation

Order the following big-O runtimes from smallest to largest.

O(logn),0(1),0(n™),0(n*),0(nlogn),O(n),O(n!), 0(2™), O(n*logn)

Are the statements in the right column true or false? If false, correct the asymptotic
notation (2(-), ©(-), O(-)). Be sure to give the tightest bound. €(-) is the opposite

of O(), ie. f(n) € Qg(n)) <= g(n) € O(f(n)).

f(n) = 20501 g(n) =1 f(n) € O(g(n))
fn)=n%+n g(n) = 0.000001n3 f(n) € Q(g(n))
f(n) = 2" 41000 g(n) = 4" +n' f(n) € O(g(n))
f(n) =log(n'®) g(n) =nlogn f(n) € ©(g(n))
f(n) =nlogn+3"+n g(n) =n?+n+logn f(n) € Q(g(n))
f(n) = nlogn +n? g(n) = logn + n? f(n) € ©(g(n))
f(n) =nlogn g(n) = (logn)? f(n) € O(g(n))

2 Analyzing Runtime

Give the worst case and best case runtime in terms of M and N.Assume ping is in

O(1) and returns an int.
int j = 0;
for (int i = N; i >0; i--) {
for (; j <=M; j++) {
if (ping(i, j) > 64) {
break;



2 Asymptotic Analysis

Give the worst case and best case runtime where N = array.length. Assume
mrpoolsort(array) is in ©(N log N).

1 public static boolean mystery(int[] array) {

2 array = mrpoolsort(array);

3 int N = array.length;

4 for (int i = 0; i <N; i1 +=1) {

5 boolean x = false;

6 for (int j =0; j<N; j+=1)¢
7 if (i != j && array[i] == array[j])
8 X = true;

9 }

10 if (Ix) {

1 return false;

12 }

13 }

14 return true;

15}

Achilles Added Additional Amazing Asymptotic And Algorithmic Analysis Achievements

(a) What is mystery() doing?

(b) Using an ADT, describe how to implement mystery() with a better runtime.
Then, if we make the assumption an int can appear in the array at most twice,

develop a solution using only constant memory.

Give the worst case and best case running time in ©(-) notation in terms of M and

N. Assume that comeOn() is in ©(1) and returns a boolean.

1 for (int i =0; i <N; 1 +=1) {

2 for (int j =1; j<=M; ) {
3 if (comeOn()) {

4 j+=1;

5 } else {

6 J *=2;

7 3

8 3



Asymptotic Analysis 3
3 Have You Ever Went Fast?

Given an int x and a sorted array A of N distinct integers, design an algorithm to
find if there exists indices i and j such that A[i] + A[j] == x.

Let’s start with the naive solution.

public static boolean findSum(int[] A, int x) {
for (int i = 9; i < A.length; i++){
for (int j = 0; j < A.length; j++) {
if (ALi] + A[3] == x) {
return true;

b

return false;

}

(a) How can we improve this solution? Hint: Does order matter here?

(b) What is the runtime of both the original and improved algorithm?



4 Asymptotic Analysis

4 CTCI Ezxtra

Union Write the code that returns an array that is the union between two given

arrays. The union of two arrays is a list that includes everything that is in both
arrays, with no duplicates. Assume the given arrays do not contain duplicates. For
example, the union of {1, 2, 3, 4} and {3, 4, 5, 6}is {1, 2, 3, 4, 5, 6}.

Hint: The method should run in O(M + N) time where M and N is the size of
each array.

Intersect Now do the same as above, but find the intersection between both ar-
rays. The intersection of two arrays is the list of all elements that are in both arrays.
Again assume that neither array has duplicates. For example, the intersection of
{1, 2, 3, 4} and {3, 4, 5, 6}is {3, 4}.

Hint: Think about using ADTs other than arrays to make the code more efficient.



	Asymptotic Notation
	Analyzing Runtime
	Have You Ever Went Fast?
	CTCI Extra

