CS 61B Asymptotic Analysis
Spring 2018 Discussion T: February 27, 2018

| Asymptotic Notation

Order the following big-O runtimes from smallest to largest.

O(logn),0(1),0(n™),0(n*),0(nlogn),O(n),O(n!), 0(2™), O(n*logn)

O(1) € O(logn) C O(n) C O(nlogn) C O(n*logn) C O(n®) C O(2™) C O(n!) C O(n™)

Are the statements in the right column true or false? If false, correct the asymptotic
notation (2(+), ©(+), O(-)). Be sure to give the tightest bound. €(+) is the opposite
of O(-), i.e. f(n) € Q(g(n)) <= g(n) € O(f(n)).

F(n) = 20501 gln) =1 7(n) € O(g(n)
fn)=n%>+n g(n) = 0.000001n3 f(n) € Q(g(n))
f(n) = 2°" + 1000 g(n) = 4" +n'% f(n) € O(g(n))
f(n) = log(n'") g(n) =nlogn f(n) € ©(g(n))
f(n) =nlogn+3"+n g(n) =n?+n+logn f(n) € Q(g(n))
f(n) =nlogn + n? g(n) =logn + n? f(n) € ©(g(n))
f(n) =nlogn g(n) = (logn)? f(n) € O(g(n))

e True, although ©(-) is a better bound.

e False, O(-). Even though n? is strictly worse than n?, n? is still in O(n?3)

because n? is always as good as or better than n3 and can never be worse.
e True, although ©(-) is a better bound.
e False, O(+).
e True.
e True.

e False, Q(-).



2 Asymptotic Analysis
2 Analyzing Runtime

Give the worst case and best case runtime in terms of M and N.Assume ping is in
O(1) and returns an int.

int j = 0;
for (int i = N; 1 >0; i--) {
for G J <=M; j+) {
if (ping(i, j) > 64) {
break;

3

Worst: ©(M + N), Best: ©(N) The trick is that j is initialized outside the loops!



Asymptotic Analysis 3

Give the worst case and best case runtime where N = array.length. Assume

mrpoolsort(array) is in ©(N log N).

public static boolean mystery(int[] array) {

}

array = mrpoolsort(array);
int N = array.length;
for (int i = 0; i <N; i1 +=1) {
boolean x = false;
for (int j =0; j <N; j+=1) {
if (i != j && array[i] == array[j])

X = true;
}
if (Ix) {
return false;
}

b

return true;

Worst: ©(N?), Best: ©(N log N) Remember sorting in the beginning!

Achilles Added Additional Amazing Asymptotic And Algorithmic Analysis Achievements

(a)

What is mystery() doing?

mystery() returns true if every int has a duplicate in the array (ex. {1, 2,

1, 23) and false if there is any unique int in the array (ex. {1, 2, 23}).

Using an ADT, describe how to implement mystery() with a better runtime.
Then, if we make the assumption an int can appear in the array at most twice,
develop a solution using only constant memory.

A ©(N) algorithm is to use a map and do key = element and value = number
of appearances, then make sure all values are > 1. Uses O(/N) memory however.
Can do constant space by sorting then going through, but sorting is generally

in O(nlogn) time.



4 Asymptotic Analysis

Give the worst case and best case running time in ©(-) notation in terms of M and
N. Assume that comeOn() is in ©(1) and returns a boolean.

for (int i = 0; i <N; i +=1) {
for (int j =1; j<=M; ) {
if (comeOn()) {

i+=1
} else {
j*: 2,

3

For comeon() the worst case is O(NM) and the best case is ©(N log M). To see
this, note that in the best case comeon() always returns false. Hence j multiplies
by 2 each iteration. The inner loop would execute relative to log M and the outer
loop iterates N times. In the worst case, comeon() always returns false, thus the

inner loop iterates M times.



Asymptotic Analysis 5
3 Have You Ever Went Fast?

Given an int x and a sorted array A of N distinct integers, design an algorithm to
find if there exists indices i and j such that A[i] + A[j] == x.

Let’s start with the naive solution.

public static boolean findSum(int[] A, int x) {
for (int i = 9; i < A.length; i++){
for (int j = 0; j < A.length; j++) {
if (ALi] + A[3] == x) {
return true;

b

return false;

}

(a) How can we improve this solution? Hint: Does order matter here?

1 public static boolean findSumFaster(int[] A, int x){
2 int left = 0;

3 int right = A.length - 1;

4 while (left <= right) {

5 if (A[left] + Alright] == x) {
6 return true;

7 } else if (A[left] + Alright] < x) {
8 left++;

9 } else {

10 right--;

1 }

12 }

13 return false;

14}

(b) What is the runtime of both the original and improved algorithm?

Naive: Worst = ©(N?), Best = ©(1). Optimized: Worst = O(N), Best =
o)



6 Asymptotic Analysis

4 CTCI Extra

Union Write the code that returns an array that is the union between two given

arrays. The union of two arrays is a list that includes everything that is in both
arrays, with no duplicates. Assume the given arrays do not contain duplicates. For
example, the union of {1, 2, 3, 4} and {3, 4, 5, 6}is {1, 2, 3, 4, 5, 6}.

Hint: The method should run in O(M + N) time where M and N is the size of

each array.

public static int[] union(int[] A, int[] B) {
HashSet<Integer> set = new HashSet<Integer>();
for (int num : A) {
set.add(num);
3
for (int num : B) {
set.add(num);
}
int[] unionArray = new int[set.size()];
int index = 0;
for (int num : set) {
unionArray[index] = num;
index += 1;
3

return unionArray;



Asymptotic Analysis 7

Intersect Now do the same as above, but find the intersection between both ar-
rays. The intersection of two arrays is the list of all elements that are in both arrays.
Again assume that neither array has duplicates. For example, the intersection of
{1, 2, 3, 4Yand {3, 4, 5, 6}is {3, 4}

Hint: Think about using ADTs other than arrays to make the code more efficient.

public static int[] intersection(int[] A, int[] B) {

HashSet<Integer> setOfA = new HashSet<Integer>();
HashSet<Integer> intersectionSet = new HashSet<Integer>();
for (int num : A) {

setOfA.add(num);
3
for (int num : B) {

if (setOfA.contains(num)) {

intersectionSet.add(num);

3
int[] intersectionArray = new int[intersectionSet.size()];
int index = 0;
for (int num : intersectionSet) {
intersectionArray[index] = num;
index += 1;
3

return intersectionArray;



	Asymptotic Notation
	Analyzing Runtime
	Have You Ever Went Fast?
	CTCI Extra

