
CS 61B Asymptotic Analysis
Spring 2018 Discussion 7: February 27, 2018

1 Asymptotic Notation
1.1 Order the following big-O runtimes from smallest to largest.

O(log n), O(1), O(nn), O(n3), O(n log n), O(n), O(n!), O(2n), O(n2 log n)

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(n2 log n) ⊂ O(n3) ⊂ O(2n) ⊂ O(n!) ⊂ O(nn)

1.2 Are the statements in the right column true or false? If false, correct the asymptotic

notation (Ω(·), Θ(·), O(·)). Be sure to give the tightest bound. Ω(·) is the opposite

of O(·), i.e. f(n) ∈ Ω(g(n)) ⇐⇒ g(n) ∈ O(f(n)).

f(n) = 20501

f(n) = n2 + n

f(n) = 22n + 1000

f(n) = log(n100)

f(n) = n log n + 3n + n

f(n) = n log n + n2

f(n) = n log n

g(n) = 1

g(n) = 0.000001n3

g(n) = 4n + n100

g(n) = n log n

g(n) = n2 + n + log n

g(n) = log n + n2

g(n) = (logn)2

f(n) ∈ O(g(n))

f(n) ∈ Ω(g(n))

f(n) ∈ O(g(n))

f(n) ∈ Θ(g(n))

f(n) ∈ Ω(g(n))

f(n) ∈ Θ(g(n))

f(n) ∈ O(g(n))

• True, although Θ(·) is a better bound.

• False, O(·). Even though n3 is strictly worse than n2, n2 is still in O(n3)

because n2 is always as good as or better than n3 and can never be worse.

• True, although Θ(·) is a better bound.

• False, O(·).

• True.

• True.

• False, Ω(·).



2 Asymptotic Analysis

2 Analyzing Runtime
2.1 Give the worst case and best case runtime in terms of M and N .Assume ping is in

Θ(1) and returns an int.

1 int j = 0;

2 for (int i = N; i > 0; i--) {

3 for (; j <= M; j++) {

4 if (ping(i, j) > 64) {

5 break;

6 }

7 }

8 }

Worst: Θ(M + N), Best: Θ(N) The trick is that j is initialized outside the loops!



Asymptotic Analysis 3

2.2 Give the worst case and best case runtime where N = array.length. Assume

mrpoolsort(array) is in Θ(N logN).

1 public static boolean mystery(int[] array) {

2 array = mrpoolsort(array);

3 int N = array.length;

4 for (int i = 0; i < N; i += 1) {

5 boolean x = false;

6 for (int j = 0; j < N; j += 1) {

7 if (i != j && array[i] == array[j])

8 x = true;

9 }

10 if (!x) {

11 return false;

12 }

13 }

14 return true;

15 }

Worst: Θ(N2), Best: Θ(N logN) Remember sorting in the beginning!

Achilles Added Additional Amazing Asymptotic And Algorithmic Analysis Achievements

(a) What is mystery() doing?

mystery() returns true if every int has a duplicate in the array (ex. {1, 2,

1, 2}) and false if there is any unique int in the array (ex. {1, 2, 2}).

(b) Using an ADT, describe how to implement mystery() with a better runtime.

Then, if we make the assumption an int can appear in the array at most twice,

develop a solution using only constant memory.

A Θ(N) algorithm is to use a map and do key = element and value = number

of appearances, then make sure all values are > 1. Uses O(N) memory however.

Can do constant space by sorting then going through, but sorting is generally

in O(n log n) time.



4 Asymptotic Analysis

2.3 Give the worst case and best case running time in Θ(·) notation in terms of M and

N . Assume that comeOn() is in Θ(1) and returns a boolean.

1 for (int i = 0; i < N; i += 1) {

2 for (int j = 1; j <= M; ) {

3 if (comeOn()) {

4 j += 1;

5 } else {

6 j *= 2;

7 }

8 }

9 }

For comeon() the worst case is Θ(NM) and the best case is Θ(N logM). To see

this, note that in the best case comeon() always returns false. Hence j multiplies

by 2 each iteration. The inner loop would execute relative to logM and the outer

loop iterates N times. In the worst case, comeon() always returns false, thus the

inner loop iterates M times.



Asymptotic Analysis 5

3 Have You Ever Went Fast?
3.1 Given an int x and a sorted array A of N distinct integers, design an algorithm to

find if there exists indices i and j such that A[i] + A[j] == x.

Let’s start with the naive solution.

1 public static boolean findSum(int[] A, int x) {

2 for (int i = 0; i < A.length; i++){

3 for (int j = 0; j < A.length; j++) {

4 if (A[i] + A[j] == x) {

5 return true;

6 }

7 }

8 }

9 return false;

10 }

(a) How can we improve this solution? Hint : Does order matter here?

1 public static boolean findSumFaster(int[] A, int x){

2 int left = 0;

3 int right = A.length - 1;

4 while (left <= right) {

5 if (A[left] + A[right] == x) {

6 return true;

7 } else if (A[left] + A[right] < x) {

8 left++;

9 } else {

10 right--;

11 }

12 }

13 return false;

14 }

(b) What is the runtime of both the original and improved algorithm?

Naive: Worst = Θ(N2), Best = Θ(1). Optimized: Worst = Θ(N), Best =

Θ(1)



6 Asymptotic Analysis

4 CTCI Extra

4.1 Union Write the code that returns an array that is the union between two given

arrays. The union of two arrays is a list that includes everything that is in both

arrays, with no duplicates. Assume the given arrays do not contain duplicates. For

example, the union of {1, 2, 3, 4} and {3, 4, 5, 6} is {1, 2, 3, 4, 5, 6}.

Hint : The method should run in O(M + N) time where M and N is the size of

each array.

1 public static int[] union(int[] A, int[] B) {

2 HashSet<Integer> set = new HashSet<Integer>();

3 for (int num : A) {

4 set.add(num);

5 }

6 for (int num : B) {

7 set.add(num);

8 }

9 int[] unionArray = new int[set.size()];

10 int index = 0;

11 for (int num : set) {

12 unionArray[index] = num;

13 index += 1;

14 }

15 return unionArray;

16 }



Asymptotic Analysis 7

4.2 Intersect Now do the same as above, but find the intersection between both ar-

rays. The intersection of two arrays is the list of all elements that are in both arrays.

Again assume that neither array has duplicates. For example, the intersection of

{1, 2, 3, 4} and {3, 4, 5, 6} is {3, 4}.

Hint : Think about using ADTs other than arrays to make the code more efficient.

1 public static int[] intersection(int[] A, int[] B) {

2 HashSet<Integer> setOfA = new HashSet<Integer>();

3 HashSet<Integer> intersectionSet = new HashSet<Integer>();

4 for (int num : A) {

5 setOfA.add(num);

6 }

7 for (int num : B) {

8 if (setOfA.contains(num)) {

9 intersectionSet.add(num);

10 }

11 }

12 int[] intersectionArray = new int[intersectionSet.size()];

13 int index = 0;

14 for (int num : intersectionSet) {

15 intersectionArray[index] = num;

16 index += 1;

17 }

18 return intersectionArray;

19 }


	Asymptotic Notation
	Analyzing Runtime
	Have You Ever Went Fast?
	CTCI Extra

