
CS 61B Hashing
Spring 2018 Exam Prep 9: March 12, 2018

1 Warmup (Spring 2015 MT2: 1c)
Draw the External Chaining Hash Set that results if we insert 5. As part of this

insertion, you should also resize from 4 buckets to 8 (in other words, the implementer

of this data structure seems to be resizing when the load factor reaches 1.5). Assume

that were using the default hashCode for integers, which simply returns the integer

itself.

0 → 8

1 → 25

2 → 10 → 18

3 →

4 →

5 → 5

6 →

7 → 15

2 Hashtable Runtimes (Fall 2016 MT2: Q3)
Consider a hash table that uses external chaining and also keeps track of the number

of keys that it contains. It stores each key at most once; adding a key a second

time has no effect. It takes the steps necessary to ensure that the number of keys is

always less than or equal to twice the number of buckets (i.e., that the load factor

is ≤ 2). Assume that its hash function and comparison of keys take constant time.

All bounds should be a function of N , the number of elements in the table.

1. Give Θ() bounds on the worst-case times of adding an element to the table

when the load factor is 1 and when it is exactly 2 before the addition.

Bound for load factor 1: Θ(N). Worse case they are all in the same bucket.

Bound for load factor 2: Θ(N). Assuming that resize doesn’t do an duplicate

check. If the resize is implemented such that there is a duplicate check (e.g.

resize just calls put), it could be Θ(N2).

2. Assume that the hashing function is so good that it always evenly distributes

keys among buckets. What now are the bounds on the worst-case time of

adding an element?



2 Hashing

Bound for load factor 1: Θ(1). With a good hash function, you will be

bounded by the load factor, which is constant.

Bound for load factor 2: Θ(N). Resizing takes linear time.

3. Making no assumption about the goodness of the hashing function, suppose

that instead of using linked lists for the buckets, we use some kind of binary

search tree that somehow keeps itself bushy. What bound can you place on

the worst-case time for testing to see if an item is in the table?

Bound: Θ(logN). Worst case everything hashes to the same bucket, but

searching will be logN because of the bushy tree.

4. Using the same representation as in part (c), but with a very good hash func-

tion, as in part (b), what bound can you place on the worst-case time for

testing to see if an item is in the table?

Bound: Θ(1)

3 Zubat (Summer 2016 MT2: Q3)
Consider the following classes and their hashcodes and equality definitions. There

is a problem with each hashCode() method below (correctness, distribution, effi-

ciency). Provide a one sentence explanation. Do not list more than one problem.

Assume there are no problems with the correctness of equals; any code for handling

casting is omitted for space.

1. DynamicString

1 class DynamicString {

2 ArrayList<Character> vals;

3 public int hashCode() {

4 int h = 0;

5 for (int i = 0; i < vals.size(); i++) {

6 h = 31 * h + vals.get(i);

7 }

8 return h;

9 }

10

11 public boolean equals(Object o) {

12 DynamicString d = (DynamicString) o;

13 return vals.equals(d.vals);

14 }

15 }

Problem(s), if any: No problems. (This one is done for you as an example

using Javas String::hashCode.)



Hashing 3

2. PokeTime

1 class PokeTime {

2 int startTime;

3 int duration;

4

5 public int getCurrentTime() {

6 // Gets the current system clock time

7 }

8

9 public int hashCode() {

10 return 1021 * (startTime + 1021

11 * duration + getCurrentTime());

12 }

13

14 public boolean equals(Object o) {

15 PokeTime p = (PokeTime) o;

16 return p.startTime == startTime

17 && p.duration == duration;

18 }

19 }

Problem(s), if any: Invalid. Non-deterministic because it uses the current

time.

3. Phonebook

1 class Phonebook {

2 List<Human> humans;

3

4 public int hashCode() {

5 int h = 0;

6 for (Human human : humans) {

7 // Assume Human hashcode is correct

8 h = (h + human.hashCode()) % 509;

9 }

10 return h;

11 }

12

13 public boolean equals(Object o) {

14 Phonebook p = (Phonebook) o;

15 return p.humans.equals(humans);

16 }

17 }

Problem(s), if any: Valid, but poor because the values that the hash code

function can return are restricted by the modulo 509.



4 Hashing

4. Person

1 class Person {

2 Long id;

3 String name;

4 Integer age;

5

6 public int hashCode() {

7 return id.hashCode() + name.hashCode()

8 + age.hashCode();

9 }

10

11 public boolean equals(Object o) {

12 Person p = (Person) o;

13 return p.id == id;

14 }

15 }

Problem(s), if any: Invalid. If two objects are equal as defined by .equals,

they should have equal hash codes. You can have two Person objects with

the same id but different name and ages, causing them to possibly hash to

different buckets.

5. DblCharSeq

1 class DblCharSeq {

2 char[] seq1;

3 char[] seq2;

4

5 public int hashCode() {

6 int h = 0;

7 for (char c1 : seq1) {

8 for (char c2 : seq2) {

9 h = 31 * (31 * h + c1) + c2;

10 }

11 }

12 return h;

13 }

14

15 public boolean equals(Object o) {

16 DblCharSeq d = (DblCharSeq) o;

17 return Arrays.equals(seq1, d.seq1)

18 && Arrays.equals(seq2, d.seq2);

19 }

20 }

Problem(s), if any: Valid but inefficient, as the hashCode function takes

quadratic work to calculate when it could easily be done in linear time.


	Warmup (Spring 2015 MT2: 1c)
	Hashtable Runtimes (Fall 2016 MT2: Q3) 
	Zubat (Summer 2016 MT2: Q3) 

