
CS 61B Linked Lists & Arrays
Spring 2018 Discussion 3: January 30, 2018

1 More Practice with Linked Lists
1 public class SLList {

2 private class IntNode {

3 public int item;

4 public IntNode next;

5 public IntNode(int item, IntNode next) {

6 this.item = item;

7 this.next = next;

8 }

9 }

10

11 private IntNode first;

12

13 public void addFirst(int x) {

14 first = new IntNode(x, first);

15 }

16 }

1.1 Implement SLList.insert which takes in an integer x and inserts it at the given

position. If the position is after the end of the list, insert the new node at the end.

For example, if the SLList is 5 → 6 → 2, insert(10, 1) results in 5 → 10 → 6 → 2.

1 public void insert(int item, int position) {



2 Linked Lists & Arrays

1.2 Add another method to the SLList class that reverses the elements. Do this using

the existing IntNodes (you should not use new).

1 public void reverse() {

1.3 Extra: If you wrote reverse iteratively, write a second version that uses recursion

(you may need a helper method). If you wrote it recursively, write it iteratively.

2 Arrays
2.1 Consider a method that inserts item into array arr at the given position. The

method should return the resulting array. For example, if x = [5, 9, 14, 15],

item = 6, and position = 2, then the method should return [5, 9, 6, 14, 15].

If position is past the end of the array, insert item at the end of the array.

Is it possible to write a version of this method that returns void and changes arr

in place (i.e., destructively)?

Extra: Write the described method:

1 public static int[] insert(int[] arr, int item, int position) {



Linked Lists & Arrays 3

2.2 Consider a method that destructively reverses the items in arr. For example calling

reverse on an array [1, 2, 3] should change the array to be [3, 2, 1].

What is the fewest number of iteration steps you need? What is the fewest number

of additional variables you need?

Extra: Write the method:

1 public static void reverse(int[] arr) {

2.3 Extra: Write a non-destructive method replicate(int[] arr) that replaces the

number at index i with arr[i] copies of itself. For example, replicate([3, 2,

1]) would return [3, 3, 3, 2, 2, 1].

1 public static int[] replicate(int[] arr) {


