
CS 61B Inheritance
Spring 2018 Discussion 4: February 6, 2018

1 Creating Cats
1.1 Given the Animal class, fill in the definition of the Cat class so that when greet()

is called, the label “Cat” (instead of “Animal”) is printed to the screen. Assume

that a Cat will make a “Meow!” noise if the cat is 5 years or older and “MEOW!”

if the cat is less than 5 years old.

1 public class Animal {

2 protected String name, noise;

3 protected int age;

4

5 public Animal(String name, int age) {

6 this.name = name;

7 this.age = age;

8 this.noise = "Huh?";

9 }

10

11 public String makeNoise() {

12 if (age < 5) {

13 return noise.toUpperCase();

14 } else {

15 return noise;

16 }

17 }

18

19 public void greet() {

20 System.out.println("Animal " + name + " says: " + makeNoise());

21 }

22 }

1 public Cat(String name, int age) {

2 super(name, age); // Call superclass' constructor.

3 this.noise = "Meow!"; // Change the value of the field.

4 }

5

6 @Override

7 public void greet() {

8 System.out.println("Cat " + name + " says: " + makeNoise());

9 }

10 }



2 Inheritance

2 Raining Cats and Dogs
2.1 Assume that Animal and Cat are defined as above. What would Java print on each

of the indicated lines?

1 public class TestAnimals {

2 public static void main(String[] args) {

3 Animal a = new Animal("Pluto", 10);

4 Cat c = new Cat("Garfield", 6);

5 Dog d = new Dog("Fido", 4);

6 a.greet(); // (A) Animal Pluto says: Huh?

7 c.greet(); // (B) Cat Garfield says: Meow!

8 d.greet(); // (C) Dog Fido says: WOOF!

9 a = c;

10 ((Cat) a).greet(); // (D) Cat Garfield says: Meow!

11 a.greet(); // (E) Cat Garfield says: Meow!

12 }

13 }

14 public class Dog extends Animal {

15 public Dog(String name, int age) {

16 super(name, age);

17 noise = "Woof!";

18 }

19 @Override

20 public void greet() {

21 System.out.println("Dog " + name + " says: " + makeNoise());

22 }

23 public void playFetch() {

24 System.out.println("Fetch, " + name + "!");

25 }

26 }

2.2 Consider what would happen if we added the following to the bottom of main under

line 12:

1 a = new Dog("Spot", 10);

2 d = a;

Why would this code produce a compiler error? How could we fix this error? This

code produces a compiler error in the second line. The static type of d is Dog while

the static type of a is Animal. Dog is a subclass of Animal, so this assignment will

fail at compile time because not all Animals are Dogs. Use casting to address the

problem.

1 d = (Dog) a;

This represents a promise to the compiler that at runtime, a will be bound to an

object that is compatible with the Dog type.



Inheritance 3

3 An Exercise in Inheritance Misery Extra

3.1 Cross out any lines that cause compile-time errors or cascading errors (failures that

occur because of an error that happened earlier in the program), and put an X

through runtime errors (if any). Don’t just limit your search to main, there could

be errors in classes A,B,C. What does D.main output after removing these lines?

1 class A {

2 public int x = 5;

3 public void m1() {System.out.println("Am1-> " + x);}

4 public void m2() {System.out.println("Am2-> " + this.x);}

5 public void update() {x = 99;}

6 }

7 class B extends A {

8 public void m2() {System.out.println("Bm2-> " + x);}

9 public void m2(int y) {System.out.println("Bm2y-> " + y);}

10 public void m3() {System.out.println("Bm3-> " + "called");}

11 }

12 class C extends B {

13 public int y = x + 1;

14 public void m2() {System.out.println("Cm2-> " + super.x);}

15 \\ public void m4() {System.out.println("Cm4-> " + super.super.x); }} can't do super.super

16 public void m5() {System.out.println("Cm5-> " + y);}

17 }

18 class D {

19 public static void main (String[] args) {

20 \\ B a0 = new A(); Dynamic type must be B or subclass of B

21 \\ a0.m1(); cascading: prev line failed, so a0 can't be initialized

22 \\ a0.m2(16); cascading: prev line failed, so a0 can't be initialized

23 A b0 = new B();

24 System.out.println(b0.x); [prints "5"]

25 b0.m1(); [prints "Am1-> 5"]

26 b0.m2(); [prints "Bm2-> 5"]

27 \\ b0.m2(61); m2 (int y) not defined in static type of b0

28 B b1 = new B();

29 b1.m2(61); [prints "Bm2y-> 61"]

30 b1.m3(); [prints "Bm3-> called"]

31 A c0 = new C();

32 c0.m2(); [prints "cm2-> 5"]

33 \\ C c1 = (A) new C(); Can't assign c1 to an A

34 A a1 = (A) c0;

35 C c2 = (C) a1;

36 c2.m3(); [print Bm3-> called]

37 \\ c2.m4(); C.m4() is invalid

38 c2.m5(); [print Cm5-> 6]

39 ((C) c0).m3(); [print Bm3-> called]



4 Inheritance

40 \\ (C) c0.m3(); NOT RUNTIME ERROR This would case the result of what the method returns and

it returns void therefore compile-time error

41 b0.update();

42 b0.m1(); [print Am1-> 99]

43 }

44 }


	Creating Cats
	Raining Cats and Dogs
	An Exercise in Inheritance Misery Extra

