
CS 61B Abstract Data Types
Spring 2018 Discussion 5: February 13, 2018

1 Assorted ADTs
A list is an ordered collection, or sequence.

1 List

2 add(element); // adds element to the end of the list

3 add(index, element); // adds element at the given index

4 get(index); // returns element at the given index

5 size(); // the number of elements in the list

A set is a (usually unordered) collection of unique elements.

1 Set

2 add(element); // adds element to the collection

3 contains(object); // checks if set contains object

4 size(); // number of elements in the set

5 remove(object); // removes specified object from set

A map is a collection of key-value mappings, like a dictionary in Python. Like a

set, the keys in a map are unique.

1 Map

2 put(key, value); // adds key-value pair to the map

3 get(key); // returns value for the corresponding key

4 containsKey(key); // checks if map contains the specified key

5 keySet(); // returns set of all keys in map

Stacks and queues are two similar types of linear collections with special behavior.

A stack is a last-in, first-out ADT: elements are always added or removed from one

end of the data structure. A queue is a first-in, first-out ADT. Both data types

support three basic operations: push(e) which adds an element, peek() which

returns the next element, and poll() which returns and removes the next element.

Java defines an interface that combines both stacks and queues in the Deque. A

deque (double ended queue, pronounced “deck”) is a linear collection that supports

element insertion and removal at both ends.

1 Deque

2 addFirst(e); // adds e to front of deque

3 removeFirst(); // removes and returns front element of deque

4 getFirst(); // returns front element of deque

5 addLast(e); // adds e to end of deque

6 removeLast(); // removes and returns last element of deque

7 getLast(); // returns last element of deque



2 Abstract Data Types

Generally-speaking, a priority queue is like a regular queue except each element

has a priority associated with it which determines in what order elements are re-

moved from the queue.

1 PriorityQueue

2 add(e); // adds element e to the priority queue

3 peek(); // looks at the highest priority element, but does not remove it from the PQ

4 poll(); // pops the highest priority element from the PQ

2 Solving Problems with ADTs
2.1 For each problem, which of the ADTs given in the previous section might you

use to solve each problem? Which ones will make for a better or more efficient

implementation?

(a) Given a news article, find the frequency of each word used in the article.

(b) Given an unsorted array of integers, return the array sorted from least to

greatest.

(c) Implement the forward and back buttons for a web browser.



Abstract Data Types 3

2.2 Java supports many built-in ADTs and data structures that implement these ADTs.

But if we want something more complicated, we’ll have to build it ourselves.

If you wish to use sorting as part of your design, assume that it will take Θ(N logN)

time where the length of the sequence is N .

(a) Suppose we want an ADT called BiDividerMap that allows lookup in both

directions: given a value, return its corresponding key, and vice versa. It should

also support numLessThan which returns the number of mappings whose key is

less than a given key.

1 BiDividerMap

2 put(k, V); // put a key, value pair

3 getByKey(K); // get the value corresponding to a key

4 getByValue(V); // get the key corresponding to a value

5 numLessThan(K); // return number of keys in map less than K

Describe how you could implement this ADT by using existing Java ADTs as

building blocks. Come up with an idea that is correct first before trying to

make it more efficient.

(b) Next, Suppose we would like to invent a new ADT called MedianFinder which

is a collection of integers and supports finding the median of the collection.

1 MedianFinder

2 add(x); // adds x to the collection of numbers

3 median(); // returns the median from a collection of numbers

Describe how you could implement this ADT by using existing Java ADTs as

building blocks. What’s the most efficient implementation you can come up

with?



4 Abstract Data Types

2.3 Define a Queue class that implements the push and poll methods of a queue ADT

using only a Stack class which implements the stack ADT.

Hint : Consider using two stacks.


	Assorted ADTs
	Solving Problems with ADTs

