
CS 61B More Asymptotic Analysis
Spring 2018 Discussion 8: March 6, 2018

Here is a review of some formulas that you will find useful when doing asymptotic

analysis.

�

∑N
i=1 i = 1 + 2 + 3 + 4 + · · ·+ N = N(N+1)

2 = N2+N
2

�

∑N−1
i=0 2i = 1 + 2 + 4 + 8 + · · ·+ 2N−1 = 2 · 2N−1 − 1 = 2N − 1

Intuition
For the following recursive functions, give the worst case and best case running time

in the appropriate O(·), Ω(·), or Θ(·) notation.

The meta-strat on this problem is to explore a rigourous framework to analyze

running time for recursive procedures. Specifically, one can derive the running time

by drawing the recursive tree and accounting for three pieces of information.

� The height of the tree.

� The branching factor of each node.

� The amount of work each node contributes relative to its input size.

2 More Asymptotic Analysis

1.1 Give the running time in terms of N .

1 public void andslam(int N) {

2 if (N > 0) {

3 for (int i = 0; i < N; i += 1) {

4 System.out.println("datboi.jpg");

5 }

6 andslam(N / 2);

7 }

8 }

andslam(N) runs in time Θ(N) worst and best case. One potentially tricky portion

is that the
∑logn

i=0 2−i is at most 2 because the geometric sum as it goes to infinity

is bounded by 2! (2 *exclamation mark* not ”2 factorial”)

More Asymptotic Analysis 3

1.2 Give the running time for andwelcome(arr, 0, N) where N is the length of the

input array arr.

1 public static void andwelcome(int[] arr, int low, int high) {

2 System.out.print("[");

3 for (int i = low; i < high; i += 1) {

4 System.out.print("loyal ");

5 }

6 System.out.println("]");

7 if (high - low > 0) {

8 double coin = Math.random();

9 if (coin > 0.5) {

10 andwelcome(arr, low, low + (high - low) / 2);

11 } else {

12 andwelcome(arr, low, low + (high - low) / 2);

13 andwelcome(arr, low + (high - low) / 2, high);

14 }

15 }

16 }

andwelcome(arr, 0, N) runs in time Θ(N logN) worst case and Θ(N) best case.

The recurrence relation is different for each case. In the worst case you always flip

the wrong side of the coin resulting in a branching factor of 2. Because there is a

branching factor of 2, there are 2i nodes in the i-th layer. Meanwhile, the work you

do per node is linear with respect to the size of the input. Hence in the i-th layer,

the work done is about n
2i . In the best case you always flip the right side of the

coin giving a branching factor of 1. The analysis is then the same as the previous

problem!

4 More Asymptotic Analysis

1.3 Give the running time in terms of N .

1 public int tothe(int N) {

2 if (N <= 1) {

3 return N;

4 }

5 return tothe(N - 1) + tothe(N - 1);

6 }

For tothe(N) the worst and best case are Θ(2N). Notice that at the i-th layer,

there are 2i nodes. Each node does constant amount of work so with the fact that∑n
i=0 2i = 2n+1 − 1, we can derive the following.

More Asymptotic Analysis 5

1.4 Give the running time in terms of N .

1 public static void spacejam(int N) {

2 if (N <= 1) {

3 return;

4 }

5 for (int i = 0; i < N; i += 1) {

6 spacejam(N - 1);

7 }

8 }

For spacejam(N) the worst and best case is O(N ·N !). Now for the i-th layer, the

number of nodes is n · (n− 1) · . . . · (n− i) since the branching factor starts at n and

decrements by 1 each layer. Actually calculating the sum is a bit tricky because

there is a pesky (n − i)! term in the denominator. We can upper bound the sum

by just removing the denominator, but in the strictest sense we would now have a

big-O bound instead of big-Θ.

6 More Asymptotic Analysis

Hey you watchu gon do
2.1 For each example below, there are two algorithms solving the same problem. Given

the asymptotic runtimes for each, is one of the algorithms guaranteed to be faster?

If so, which? And if neither is always faster, explain why.

(a) Algorithm 1: Θ(N), Algorithm 2: Θ(N2)

Algorithm 1: Θ(N) - Θ gives tightest bounds therefore the slowest algorithm

1 could run is relative to N while the fastest algorithm 2 could run is relative

to N2.

(b) Algorithm 1: Ω(N), Algorithm 2: Ω(N2)

Neither, Ω(N) means that algorithm 1’s running time is lower bounded by N ,

but does not provide an upper bound. Hence the bound on algorithm 1 could

not be tight and it could also be in Ω(N2) or lower bounded by N2.

(c) Algorithm 1: O(N), Algorithm 2: O(N2)

Neither, same reasoning for part (b) but now with upper bounds. O(N2) could

also be in O(1).

(d) Algorithm 1: Θ(N2), Algorithm 2: O(logN)

Algorithm 2: O(logN) - Algorithm 2 cannot run SLOWER than O(logN)

while Algorithm 1 is constrained on to run FASTEST and SLOWEST by

Θ(N2).

(e) Algorithm 1: O(N logN), Algorithm 2: Ω(N logN)

Neither, Algorithm 1 CAN be faster, but it is not guaranteed - it is guaranteed

to be ”as fast as or faster” than Algorithm 2.

Would your answers above change if we did not assume that N was very large (for

example, if there was a maximum value for N , or if N was constant)?

Depends, because for fixed N , constants and lower order terms may dominate the

function we are trying to bound. For example N2 is asymptotically larger than

10000N , yet when N is less than 10000, 10000N is larger than N2. This highlights

the power in using big-O because these lower order terms don’t affect the running

time as much as our input size grows very large!

However, part of the definition of O(·), Ω(·), and Θ(·) is the limit to infinity

(limN→∞) so, when working with asymptotic notation, we must always assume

large inputs.

More Asymptotic Analysis 7

Asymptotic Notation

3.1 Draw the running time graph of an algorithm that is O(
√
N) in the best case and

Ω(N) in the worst case. Assume that the algorithm is also trivially Ω(1) in the best

case and O(∞) in the worst case.

Below we have the graph an example solution. Assume that the cyan region extends

arbitrarily towards infinity. Ignoring constants, the algorithm running time takes

at most
√
N time (and trivially at least constant time) in the worst case. The

algorithm also takes at least N time (and trivially at most infinite time) in the

worst case.

Extra: Following is a question from last week, now that you have properly learned

about O(·), Ω(·), or Θ(·).

8 More Asymptotic Analysis

3.2 Are the statements in the right column true or false? If false, correct the asymptotic

notation (Ω(·), Θ(·), O(·)). Be sure to give the tightest bound. Ω(·) is the opposite

of O(·), i.e. f(n) ∈ Ω(g(n)) ⇐⇒ g(n) ∈ O(f(n)).

f(n) = 20501

f(n) = n2 + n

f(n) = 22n + 1000

f(n) = log(n100)

f(n) = n log n + 3n + n

f(n) = n log n + n2

f(n) = n log n

g(n) = 1

g(n) = 0.000001n3

g(n) = 4n + n100

g(n) = n log n

g(n) = n2 + n + log n

g(n) = log n + n2

g(n) = (logn)2

f(n) ∈ O(g(n))

f(n) ∈ Ω(g(n))

f(n) ∈ O(g(n))

f(n) ∈ Θ(g(n))

f(n) ∈ Ω(g(n))

f(n) ∈ Θ(g(n))

f(n) ∈ O(g(n))

� True, although Θ(·) is a better bound.

� False, O(·). Even though n3 is strictly worse than n2, n2 is still in O(n3)

because n2 is always as good as or better than n3 and can never be worse.

� True, although Θ(·) is a better bound.

� False, O(·).

� True.

� True.

� False, Ω(·).

Fall 2015 Extra

4.1 If you have time, try to answer this challenge question. For each answer true or

false. If true, explain why and if false provide a counterexample.

(a) If f(n) ∈ O(n2) and g(n) ∈ O(n) are positive-valued functions (that is for all

n, f(n), g(n) > 0), then f(n)
g(n) ∈ O(n).

Nope this does not hold in general! Consider if f(n) = n2 and g(n) = 1
n .

Readily we have f(n), g(n) ∈ O(n) but when divided they give us:

f(n)

g(n)
=

n2

n−1
= n3 /∈ O(n)

(b) If f(n) ∈ Θ(n2) and g(n) ∈ Θ(n) are positive-valued functions, then f(n)
g(n) ∈

Θ(n).

This does hold in general! We can think about this in two cases:

� First we ask, when can the ratio f(n)
g(n) be larger than n. As f(n) is tightly

bounded (by Θ) by n2, this is only true when g(n) is asymptotically

smaller than n because we are dividing n2 (this is what happened in

part a). However, g(n) is tightly bounded, and thus lower bounded by

n, this cannot happen.

More Asymptotic Analysis 9

� Next we ask, when can the ratio be smaller than n. Again as f(n) is

tightly bounded by n2, this can only happen when g(n) is asymptotically

bigger than n as again we are dividing. But since g(n) is tightly bounded,

and thus upper bounded by n, this too cannot happen.

So what we note here is that f(n)
g(n) is upper and lower bounded by n hence it is

in Θ(n). We can also give a rigorous proof from definition of part b using the

definitions provided in class.

Theorem 1. If f(n) ∈ Θ(n2) and g(n) ∈ Θ(n) are positive-valued functions,

then f(n)
g(n) ∈ Θ(n).

Proof. Given that f ∈ Θ(n2) is positive, by definition there exists k0, k
′
0 > 0

such that for all n > N , the following holds.

k0n
2 ≤ f(n) ≤ k′0n

2

Similarly, g ∈ Θ(n) implies there exists k1, k
′
1 > 0 such that

k1n ≤ g(n) ≤ k′1n

Now consider f(n)
g(n) .

f(n)

g(n)
≤ k′0n

2

k1n
=

k′0n

k1
∈ O(n)

f(n)

g(n)
≥ k0n

2

k′1n
=

k0n

k′1
∈ Ω(n)

As f(n)
g(n) is in O(n) and Ω(n) then it is in Θ(n).

