CS 61B
 Spring 2018

 Graphs \& Sorting

 Graphs \& Sorting
 Discussion 12: April 10, 2018

1 Dijkstra's Algorithm

For the graph below, let $g(u, v)$ be the weight of the edge between any nodes u and v. Let $h(u, v)$ be the value returned by the heuristic for any nodes u and v.

Edge weights	Heuristics
$g(A, B)=1$	$h(A, G)=8$
$g(B, C)=3$	$h(B, G)=6$
$g(C, F)=4$	$h(C, G)=5$
$g(C, G)=4$	$h(F, G)=1$
$g(F, G)=1$	$h(D, G)=6$
$g(A, D)=2$	$h(E, G)=3$
$g(D, E)=3$	
$g(E, G)=3$	

Run Dijkstra's algorithm to find the shortest paths from A to every other vertex. You may find it helpful to keep track of the priority queue and make a table of current distances.

Given the weights and heuristic values for the graph below, what path would A* search return, starting from A and with G as a goal?

Is the heuristic admissible? Why or why not?

2 Minimum Spanning Trees

Perform Prim's algorithm to find the minimum spanning tree. Pick A as the initial node. Whenever there is more than one node with the same cost, process them in alphabetical order.

Use Kruskal's algorithm to find a minimum spanning tree.
2.3 There are quite a few MSTs here. How many can you find?

3 Mechanical Sorting

3.1 Show the steps taken by each sort on the following unordered list:
$0,4,2,7,6,1,3,5$
(a) Insertion sort
(b) Selection sort
(c) Merge sort
(d) Use heapsort to sort the following array (hint: draw out the heap). Draw out the array at each step:
$0,6,2,7,4$

