CS 61B

 Graphs \& Sorting

 Graphs \& Sorting}

Spring 2018

Discussion 12: April 10, 2018

1 Dijkstra's Algorithm

For the graph below, let $g(u, v)$ be the weight of the edge between any nodes u and v. Let $h(u, v)$ be the value returned by the heuristic for any nodes u and v.

Edge weights	Heuristics
$g(A, B)=1$	$h(A, G)=8$
$g(B, C)=3$	$h(B, G)=6$
$g(C, F)=4$	$h(C, G)=5$
$g(C, G)=4$	$h(F, G)=1$
$g(F, G)=1$	$h(D, G)=6$
$g(A, D)=2$	$h(E, G)=3$
$g(D, E)=3$	
$g(E, G)=3$	

Run Dijkstra's algorithm to find the shortest paths from A to every other vertex. You may find it helpful to keep track of the priority queue and make a table of current distances.

$$
\begin{aligned}
& A \rightarrow B=1 \\
& A \rightarrow C=4 \\
& A \rightarrow D=2 \\
& A \rightarrow E=5 \\
& A \rightarrow F=6 \\
& A \rightarrow G=7
\end{aligned}
$$

1.2 Given the weights and heuristic values for the graph below, what path would A* search return, starting from A and with G as a goal?

A* would return $A-D-E-G$.
1.3 Is the heuristic admissible? Why or why not?

A heuristic is admissible if all of its estimations $h(x)$ are optimistic. No it's not, because the actual shortest path from $A \rightarrow G$ is of cost 7 if we take the northern route, but the heuristic estimates it will cost 8 .

2 Minimum Spanning Trees

Perform Prim's algorithm to find the minimum spanning tree. Pick A as the initial node. Whenever there is more than one node with the same cost, process them in alphabetical order.

Use Kruskal's algorithm to find a minimum spanning tree.
In this case, Prim and Kruskal's output the same MST. This is not always the case.

2.3 There are quite a few MSTs here. How many can you find?

There are three choices to use an edge of weight 2 that can be used interchangeably and there are two choices of using an edge of weight 3 that can be used interchangeably. So there are $3 * 2=6$ possible MST's. This math does not always lead to this. The key thing to note is that we could replace one of the weight 2 edges with another weight 2 edge and the entire graph would be spanning. Same for the weight 2 edges.

3 Mechanical Sorting

3.1 Show the steps taken by each sort on the following unordered list:
$0,4,2,7,6,1,3,5$
(a) Insertion sort

0	\mid	4	2	7	6	1	3	5
0	4	1	2	7	6	1	3	5
0	2	4	1	7	6	1	3	5
0	2	4	7	1	6	1	3	5
0	2	4	6	7	1	1	3	5
0	1	2	4	6	7	1	3	5
0	1	2	3	4	6	7	1	5
0	1	2	3	4	5	6	7	1

(b) Selection sort

0	\mid	4	2	7	6	1	3	5
0	1	1	2	7	6	4	3	5
0	1	2	1	7	6	4	3	5
0	1	2	3	1	6	4	7	5
0	1	2	3	4	1	6	7	5
0	1	2	3	4	5	1	7	6
0	1	2	3	4	5	6	1	7
0	1	2	3	4	5	6	7	1

(c) Merge sort

04276135				
04276135				
054	76	1	3	5
0427	16	35		
024711356				
01234567				

(d) Use heapsort to sort the following array (hint: draw out the heap). Draw out the array at each step:

$$
0,6,2,7,4
$$

76204 (turns the array into a valid heap)
64207 ('delete' 7, then sink 4)
40267 ('delete' 6, then sink 0)
20467 ('delete' 4, then sink 2)
02467 ('delete' 2)
02467 ('delete' 0)

