1 Quicksort

- 1.1 Sort the following unordered list using stable quicksort. Assume that the pivot you use is always the first element and that we use the 3-way merge partitioning process described in lecture and lab last week. Show the steps taken at each partitioning step.
 - 18, 7, 22, 34, 99, 18, 11, 4
- 1.2 What is the worst case running time of quicksort? Give an example of a list that meets this worst case running time.
- 1.3 What is the best case running time of quicksort? Briefly justify why you can't do any better than this best case running time.
- 1.4 What are two techniques that can be used to reduce the probability of quicksort taking the worst case running time?

2 Comparing Sorting Algorithms

2.1 When choosing an appropriate algorithm, there are often several trade-offs that we need to consider. For the following sorting algorithms, give the expected space complexity and time complexity, as well as whether or not each sort is stable.

	Time Complexity	Space Complexity	Stability
Insertion Sort			
Heapsort			
Mergesort			
Quicksort			

2 More Sorting

2.2 For each unstable sort, give an example of a list where the order of equivalent items is not preserved.

2.3 In the real world, what are some other tradeoffs we might want to consider when designing and implementing a sorting algorithm?

3 Bounding Practice

3.1

Given an array, the heapification operation permutes the elements of the array into a heap. There are many solutions to the heapification problem. One approach is bottom-up heapification, which treats the existing array as a heap and rearranges all nodes from the bottom up to satisfy the heap invariant. Another is top-down heapification, which starts with an empty heap and inserts all elements into it. Why can we say that any solution for heapification requires $\Omega(n)$ time?

3.2 Show that the worst-case runtime for top-down heapification is in $\Theta(n \log n)$. Why does this mean that the optimal solution for heapification takes $O(n \log n)$ time?

- 3.3 In contrast, bottom-up heapification is an O(n) algorithm. Is bottom-up heapification asymptotically-optimal?
- 3.4 *Extra*: Show that the running time of bottom-up heapify is $\Theta(n)$. You should make use of this summation and its derivative:

$$\sum_{i=0}^{\infty} x^{i} = \frac{1}{1-x} \qquad \qquad \sum_{i=0}^{\infty} ix^{i} = \frac{x}{(1-x)^{2}}$$