
CS 61B Discussion 6 EP Solutions Spring 2017
1 Exceptions (Spring 2016 MT2 Q3)
Consider the code below. Recall that x / 2 rounds down to the nearest integer.
public static void checkIfZero(int x) throws Exception {

if (x == 0) {
throw new Exception("x was zero!");

}
System.out.println(x); // PRINT STATEMENT

}
public static int mystery(int x) {

int counter = 0;
try {

while (true) {
x = x / 2;
checkIfZero(x);
counter += 1;
System.out.println("counter is " + counter); // PRINT STATEMENT

}
} catch(Exception e) {

return counter;
}

}
public static void main(String[] args) {

System.out.println("mystery of 1 is " + mystery(1));
System.out.println("mystery of 6 is " + mystery(6));

}

What will be the output when main is run? You may not need all lines.

mystery of 1 is 0
3
counter is 1
1
counter is 2
mystery of 6 is 2

CS 61B, Spring 2017, Discussion 6 EP Solutions 1

2 AltList (Summer 2016 MT2 Q2)
A normal generic linked list contains objects of only one type. But we can imagine a generic
linked list where entries alternate between two types. AltList is an implementation of such a
data structure:
public class AltList<X, Y> {

private X item;
private AltList<Y, X> next;

AltList(X item, AltList<Y, X> next) {
this.item = item;
this.next = next;

}
}

Let’s construct an AltList instance:
AltList<Integer, String> list =

new AltList<Integer, String>(5,
new AltList<String, Integer>("cat",

new AltList<Integer, String>(10,
new AltList<String, Integer>("dog", null))));

This list represents [5 cat 10 dog]. In this list, assuming indexing begins at 0, all even-index
items are Integers and all odd-index items are Strings.

Write an instance method called pairsSwapped() for the AltList class that returns a copy
of the original list, but with adjacent pairs swapped. Each item should only be swapped once. This
method should be non-destructive: it should not modify the original AltList instance.

For example, calling list.pairsSwapped() should yield the list [cat 5 dog 10]. There
were two swaps: "cat" and 5 were swapped, then "dog" and 10 were swapped. You may assume
that the list on which pairsSwapped() is called has an even non-zero length. Your code should
maintain this invariant.

public class AltList<X, Y> {
// ... continued from above

public AltList<Y, X> pairsSwapped() {
AltList<Y, X> ret = new AltList<Y, X>(next.item, new AltList<X,

Y>(item, null));
if (next.next != null) {

ret.next.next = next.next.pairsSwapped();
}
return ret;

}
}

CS 61B, Spring 2017, Discussion 6 EP Solutions 2

3 Every Kth Element (Fall 2014 MT1 Q5)
Fill in the next() method in the following class. Do not modify anything outside of next.

import java.util.Iterator;
import java.util.NoSuchElementException;
/** Iterates over every Kth element of the IntList given to the constructor.

* For example, if L is an IntList containing elements

* [0, 1, 2, 3, 4, 5, 6, 7] with K = 2, then

* for (Iterator<Integer> p = new KthIntList(L, 2); p.hasNext();) {

* System.out.println(p.next());

* }

* would print get 0, 2, 4, 6. */
public class KthIntList implements Iterator <Integer> {

public int k;
private IntList curList;
private boolean hasNext;

public KthIntList(IntList I, int k) {
this.k = k;
this.curList = I;
this.hasNext = true;

}

/** Returns true iff there is a next Kth element. Do not modify. */
public boolean hasNext() {

return this.hasNext;
}

/** Returns the next Kth element of the IntList given in the constructor.

* Returns the 0th element first. Throws a NoSuchElementException if

* there are no Integers available to return. */
public Integer next() {

if (curList == null) {
throw new NoSuchElementException();

}
Integer toReturn = curList.head;
for (int i = 0; i < k && curList != null; i++) {

curList = curList.tail;
}
hasNext = (curList != null);
return toReturn;

}
}

CS 61B, Spring 2017, Discussion 6 EP Solutions 3

