
CS 61B Asymptotics II
Spring 2018 Exam Prep 8: March 5, 2018

1 Warmup
Given the following method on a sorted array, what is the worst-case runtime?

There is an approach to make this algorithm faster. What is that approach and

what is the worst-case runtime of the faster algorithm?

1 public static int f1(int i, int[] numList) {

2 for (int j = 0; j < numList.length; j++) {

3 if (numList[j] == i) {

4 return j;

5 }

6 }

7 return -1;

8 }

In the worst case we iterate through the entire numList, resulting in a worst-cast

runtime of Θ(N), where N is the number of elements in numList. Since it is sorted,

we can use binary search to cut the runtime down to Θ(logN) in the worst case.

2 You wanna hang out this Spring ’15? Asymptotes!
For each of the pieces of code below, give the runtime in Θ notation as a function

of the given parameters. Let f(x) be a function that runs in time linear to the size

of its input x.

1 public static void f1(int n) {

2 if (n == 0) {return;}

3 f1(n/2);

4 f(n);

5 f1(n/2);

6 }

Θ(n log n). There are log n levels and each level does n work, for a runtime of

Θ(n log n) in total.

1 public static void f2(int n) {

2 if (n == 0) {return;}

3 f2(n-1);

4 f(17);

5 f2(n-1);

6 }

Θ(2n). The runtime is dominated by the work done at the leaves, i.e. the bottom

of the recursion, with 2N leaves.

2 Asymptotics II

1 public static void f3(int n, int m) {

2 if (m <= 0) {

3 return;

4 } else {

5 for (int i = 0; i < n; i +=1) {

6 f3(n, m - 1);

7 }

8 }

9 }

Θ(nm). This is a generalization of f2.

3 It’s Fall ’16 And I’m Still Doing Asymptotics
1. Give best- and worst-case runtime bounds for the call foo2(N,N) as a function

of N. Assume that cnst() is some function that runs in constant time.

1 public static void foo2(int i, int N) {

2 if (i==0) {return;}

3 for (int j = 0; j < i; j = j+1) {

4 cnst();

5 }

6 if (i > N/2) {

7 foo2(i-1, N);

8 } else {

9 foo2(i/2, N) + foo2(i/2, N);

10 }

11 }

Best case: Θ(N2) Worst case: Θ(N2)

2. True or false: if f(N) ∈ O(N) and g(N) ∈ O(N2), and both functions are

non-negative, then |g(N) − f(N)| ∈ Ω(N). if true, explain why; otherwise,

give a counterexample.

False. Let f(N) = g(N) = N . Then the difference of the two is not bounded

below by N .

3. True or false: if f(N) ∈ Θ(N) and g(N) ∈ Θ(N2), and both functions are

non-negative, then |g(N) − f(N)| ∈ Ω(N). If true, explain why; otherwise

give a counterexample.

True. Because g(N) is bounded below by N2, and f(N) is negligible compared

to N2, then their difference is bounded below by N .

Asymptotics II 3

4. What is a tight big-O bound for the worst case running time of the following

algorithm, as a function of the parameter r?

1 /** Assumes that VALS is a square array, and that 0 <= R, C < vals.length. */

2 double best(double vals[][], int r, int c) {

3 if (r == 0) {

4 return vals[r][c];

5 }

6 double v = best(vals, r-1, c);

7 if (c > 0) {

8 v = Math.max(v, best(vals, r-1, c-1));

9 }

10 if (c < vals[r].length - 1) {

11 v = Math.max(v, best(vals, r-1, c+1));

12 }

13 return v + vals[r][c];

14 }

Worst case: O(3r)

4 Fall ’16: I’m more than just a runtime
1. Your friend, a budding politician, meets several hundred people a day and

places their names onto the front of an ArrayList. Once there, he never

removes a name, but he sometimes looks through the list to see the order in

which he met people. At least one aspect of his procedures is slower than it

could be. Describe and justify a small change in your friend’s use of the data

structure that would improve runtime without changing the data structure

involved.

Adding to the front of an ArrayList is costly because you have to shift all the

elements over by 1, making it a linear time operation. Adding to the back

can be done much faster.

Now describe and justify a change in the data structure that would improve

runtime without requiring a change in actions taken.

Use a Linked List to do constant time additions to the front.

4 Asymptotics II

5 (Most 61B Problems) ∈ O(These Problems)
1. Give a tight Θ bound on the running time.

1 public int f1(n):

2 if (n == 1){return 0;}

3 if (n is even){

4 return f3(n/2);

5 } else {

6 return f3(n+1);

7 }

Answer: Θ(logN)

One can come up with O and Ω bounds for different cases, and see that they’re

the same, since any odd number incremented by 1 is even.

2. Give a tight Θ bound on the running time, where process() is a method that

runs in Θ(n log n)

1 function f2(n):

2 if (n = 1){return 1;}

3 int a = f2(n/2);

4 int b = f2(n/2);

5 x = process(a, b);

6 return x;

Answer: Θ(n log2 n) The recursion tree should give you a summation that

looks like this:

n log n + n log(
n

2
) + n log(

n

4
) + . . . = n(log n + log(

n

2
) + log(

n

4
) + . . .)

= n(log n + (log n− log 2) + (log n− log 4) + . . .)

= n((log n + log n + · · ·+ log n)− (log 2 + log 4 + · · ·+ log n))

= n((log n)2 − (1 + 2 + · · ·+ log n))

≈ n(log2 n− log2 n

2
)

=
n log2 n

2

= Θ(n log2 n)

3. True or False: If f(n) = O(g(n)), then 2f(n) = O(2g(n))

False; Consider f(n) = n and g(n) = n/2, then use what you know about

exponents to mess around with the base.

	Warmup
	You wanna hang out this Spring '15? Asymptotes!
	It's Fall '16 And I'm Still Doing Asymptotics
	Fall '16: I'm more than just a runtime
	(Most 61B Problems) O(These Problems)

