
CS 61B Graphs
Spring 2018 Exam Prep 11: April 2, 2018

1 Warmup with DFS and BFS

(a) For the graph above, give the depth first search preorder traversal starting from

vertex 9, assuming that we break ties by visiting smaller numbers first.

(b) For the graph above, give the depth first search postorder traversal starting

from vertex 9, assuming that we break ties by visiting smaller numbers first.

(c) For the graph above, give the breadth first search traversal starting from vertex

9, assuming that we break ties by visiting smaller numbers first.

2 Cycle Detection
Given an undirected graph, provide an algorithm that returns true if a cycle exists

in the graph, and false otherwise. Also provide a Θ bound for the worst case runtime

of your algorithm. You may use either an adjacency list or an adjacency matrix to

represent your graph.



2 Graphs

3 Compiler Dependencies
Come up with an efficient algorithm for the following problem: you are given

a list of java files, some of which are dependent on one another. For example,

TestRODI.java from the midterm was dependent on the ReverseOddDigitIterator

class because it used that object’s methods in the test. Therefore, if you want to

compile TestRODI.java, you have to compile ReverseOddDigitIterator.java first.

Given the list of java files, your job is to determine the ordering in which to compile

the files so that all dependencies are compiled first.

Hint : Think about the different graph traversals that you learned in lecture.

4 Bipartite Graphs
(a) Suppose we want to color every vertex of a graph either blue or green such that

no vertex touches anther vertex of the same color. This is possible for some

graphs but not others. A graph where a valid coloring exists is called bipartite.

Which of the graphs below are bipartite?



Graphs 3

(b) Now fill in the method twocolor below such that a correct assignment to the

blue vertices is printed out when the code runs, or if no such assignment is

possible, an exception is thrown. Write only one statement per line. Please use

the provided Graph API given to you.

1 public class Graph {

2 public Graph(int V): // Create empty graph with v vertices

3 public void addEdge(int v, int w): // add an edge v-w

4 Iterable<Integer> adj(int v): // vertices adjacent to v

5 int V(): // number of vertices

6 int E(): // number of edges

7 ...

8 }

1 HashSet<Integer> blue = new HashSet<Integer>();

2 HashSet<Integer> green = new HashSet<Integer>();

3 twocolor(G, 0, blue, green);

4 System.out.println(Blue vertices are: + blue.toString());

5

6 public static void twocolor(Graph G, int v, Set<Integer> a, Set<Integer> b){

7 _________________________________

8 for (__________________________________________) {

9 if (________________________________________) {

10 throw new IllegalArgumentException("graph is not bipartite"); }

11 if (_______________________________________) {

12 _________________________________

13 }

14 }

15 }

16


	Warmup with DFS and BFS
	Cycle Detection
	Compiler Dependencies
	Bipartite Graphs

