
CS 61B Graphs
Spring 2018 Exam Prep 11: April 2, 2018

1 Warmup with DFS and BFS

(a) For the graph above, give the depth first search preorder traversal starting from

vertex 9, assuming that we break ties by visiting smaller numbers first.

9, 0, 1, 6, 5, 2, 7

(b) For the graph above, give the depth first search postorder traversal starting

from vertex 9, assuming that we break ties by visiting smaller numbers first.

0, 2, 7, 5, 6, 1, 9

(c) For the graph above, give the breadth first search traversal starting from vertex

9, assuming that we break ties by visiting smaller numbers first.

9, 0, 1, 2, 6, 7, 5

2 Cycle Detection
Given an undirected graph, provide an algorithm that returns true if a cycle exists

in the graph, and false otherwise. Also provide a Θ bound for the worst case runtime

of your algorithm. You may use either an adjacency list or an adjacency matrix to

represent your graph.

We do a depth first search traversal through the graph. While we recurse, if we

visit a node that we visited already, that indicates a cycle. Assuming integer labels,

we can use something like a visited boolean array to keep track of the elements

that we’ve seen, and while looking through a node’s neighbors, if visited gives true,

then that indicates a cycle. Note that this algorithm differs slightly if the graph

is directed. If the graph is directed, then there is a cycle if a node has already

been visited and it is still in the recursive call stack (i.e. still in the fringe and not

popped off yet). Assuming an adjacency list implementation, the runtime of this is

equivalent to the runtime of depth first search, which is Θ(|V | + |E|), where |V | is

the number of vertices and |E| is the number of edges.

2 Graphs

3 Compiler Dependencies
Come up with an efficient algorithm for the following problem: you are given

a list of java files, some of which are dependent on one another. For example,

TestRODI.java from the midterm was dependent on the ReverseOddDigitIterator

class because it used that object’s methods in the test. Therefore, if you want to

compile TestRODI.java, you have to compile ReverseOddDigitIterator.java first.

Given the list of java files, your job is to determine the ordering in which to compile

the files so that all dependencies are compiled first.

Hint : Think about the different graph traversals that you learned in lecture.

We convert this information into a directed graph. The vertices will be the files, and

an edge from file i to file j means that j is dependent on file i and that i needs to be

compiled before j. Thus, we first construct the graph by looking through the files,

and finding dependencies. The ordering of the files will be a given by a topological

sort of the graph. Thus, run depth first search of the graph to get the postorder

traversal of it. Return the reverse of the postorder traversal. The runtime of this

function, ignoring the scanning of the files, the runtime will be Θ(|V |+ |E|), where

|V | is the number of files and |E| is the total number of dependencies.

4 Bipartite Graphs
(a) Suppose we want to color every vertex of a graph either blue or green such that

no vertex touches anther vertex of the same color. This is possible for some

graphs but not others. A graph where a valid coloring exists is called bipartite.

Which of the graphs below are bipartite?

Graphs 3

(b) Now fill in the method twocolor below such that a correct assignment to the

blue vertices is printed out when the code runs, or if no such assignment is

possible, an exception is thrown. Write only one statement per line. Please use

the provided Graph API given to you.

1 public class Graph {

2 public Graph(int V): // Create empty graph with v vertices

3 public void addEdge(int v, int w): // add an edge v-w

4 Iterable<Integer> adj(int v): // vertices adjacent to v

5 int V(): // number of vertices

6 int E(): // number of edges

7 ...

8 }

1 HashSet<Integer> blue = new HashSet<Integer>();

2 HashSet<Integer> green = new HashSet<Integer>();

3 twocolor(G, 0, blue, green);

4 System.out.println(Blue vertices are: + blue.toString());

5

6 public static void twocolor(Graph G, int v, Set<Integer> a, Set<Integer> b){

7 a.add(v);

8 for (int u : G.adj(v)) {

9 if (a.contains(u)) {

10 throw new IllegalArgumentException("graph is not bipartite"); }

11 if (!b.contains(u)) {

12 twocolor(G, u, b, a);

13 }

14 }

15 }

16

	Warmup with DFS and BFS
	Cycle Detection
	Compiler Dependencies
	Bipartite Graphs

