
CS 61B Shortest Paths and MST
Spring 2018 Exam Prep 12: April 9, 2018

1 Warmup with MST and SP
(a) For the graph below, use Kruskals algorithm to find the MST. The number on

each edge is the weight, and the letter is a unique label you should use in your

answer to specify that edge. Provide the edges in the order theyd be

inserted into the MST by Kruskals algorithm. Break any ties using the

alphabetical label. Use the blanks below. You may not need all blanks. Give

your answer in terms of the alphabetical labels, e.g. if Kruskals starts

with the edge between vertices 3 and 4, you would write H in the first blank.

–A– –C– –G– –E–

(b) Repeat part a, but using Prims algorithm, starting from vertex #3. As be-

fore, give your answer in the order added to the MST and in terms

of the alphabetical labels. You may not need all of the blanks.

–C– –A– –G– –E–

(c) For the graph below, give the order in which Dijkstras Algorithm would visit

each vertex, starting from vertex A.

–A– –B– –C– –D– –F– –H– –G– –E–

2 Shortest Paths and MST

2 Conceptual MST and SP
Answer the following questions regarding MSTs and shortest path algorithms for a

weighted, undirected graph. If the question is T/F and the statement is true,

provide an explanation. If the statement is false, provide a counterexample.

(a) (T/F) If all edge weights are equal and positive, breadth-first search starting

from node A will return the shortest path from a node A to a target node B.

True. Breadth-first search finds shortest paths in an unweighted graph. Sup-

pose all the weights were equal to w. If you divide all of the weights by w, then

the edge weights are all 1, which can be thought of as an unweighted graph.

BFS will return the shortest path from node A that is w dist away, then 2w

dist, then so on.

(b) (T/F) If all edges have distinct weights, the shortest path between any two

vertices is unique.

False. Consider the following diamond graph:
b

s t

a
3 4

2 5

(c) (T/F) Adding a constant positive integer k to all edge weights will not affect

any shortest path between vertices.

False. Adding a constant to all the edge weights when calculating shortest paths

means we start favoring paths that use fewer edges. As a concrete example:

s t

a
7 8

20

Adding 10 to each edge weight would change the shortest path from initially

s→ a→ t to s→ t.

(d) Draw a weighted graph (could be directed or undirected) where Dijkstra’s would

incorrectly give the shortest paths from some vertex.

The correctness of Dijkstra’s algorithm relies on the fact that when you visit a

vertex, you have found its shortest path to it already. Dijkstra’s algorithm is

greedy, so once you visit a vertex, you can’t visit it again to undo any mistakes.

This is where negative edge weights can be a problem. Here is a concrete

counterexample.

s ta

b

1 1

5
−100

Starting Dijkstra’s as s, we have a and b in our PQ. We pop off a and fill in the

shortest path to t as 2. b would be next and would set the shortest path to a

Shortest Paths and MST 3

as -95, but by then it’s too late to update the better shortest path to t cause a

was already removed from the PQ.

(e) (T/F) Adding a constant positive integer k to all edge weights will not affect

any MST of the graph.

True. One way to think about is through the cut property. Considering any

cut of the graph, if you add k to all the edges crossing the cut, it won’t affect

which edge you decide to add to the MST: the edge of smallest weight even

after adding k is still the edge of smallest weight crossing the cut. Even with

multiple edges of the same weight crossing the cut, adding k does not effect the

possible options.

(f) (T/F) Prim’s algorithm works even when there are negative edge weights in the

graph.

True. MST algorithms work fine with negative edge weights. This goes back

to the cut property since for any cut, you can choose a negative edge weight as

long as it’s the smallest. Another way to think about it is to use the fact that

adding a constant positive integer k does not affect the MST. If the smallest

edge weight in the graph is −p, if you added p to all the edge weights, that

would make all edge weights non-negative, and the MST still hasn’t changed.

(g) Why are disjoint sets used in Kruskal’s algorithm?

Disjoint sets are used to keep track of the connected components formed by

Kruskal’s algorithm. That way, we can use this for cycle detection. When we

consider the next edge to add to our MST, if the two vertices for this edge are in

the same connected component (analogous to having the same root if you were

using union-find), then adding this edge into the MST would create a cycle.

(h) (T/F) The last edge added to the MST by Prim’s algorithm is always the

highest weight edge of the MST. False. Considering the following graph and

starting Prim’s algorithm at vertex s:

s ta
2 1

3 Shortest Path Algorithm Design
Design an efficient algorithm for the following problem: Given a weighted, undi-

rected, and connected graph G where the weights of every edge in G are all integers

between 1 and 10, and a starting vertex s in G, find the distance from s to every

other vertex in the graph (where the distance between two vertices is defined as the

weight of the shortest path connecting them).

Your algorithm must run asymptotically faster than Dijkstra’s.

Hint : What other shortest path algorithms have we learned? Could we possibly

modify the graph to apply other SP algorithms?

One possible solution is to convert every weighted edge of weight w into a chain of

w − 1 unweighted vertices. As an example of what we mean:

s t
4

4 Shortest Paths and MST

s t

Once we do this, we run BFS starting from our source. BFS will give us shortest

paths for an unweighted graph, so this is exactly why we make this weighted graph

an unweighted graph. In the worse case, every edge has weight 10, so we add 9

extra vertices per edge and 9 extra edges per weighted edge. However, these are

both constants so our runtime is still asymptotically Θ(|V |+ |E|) by BFS.

Another possible solution is to modify the priority queue to return the minimum

more quickly by creating something like 11 buckets, 1 for each edge weight, with

each bucket containing a linked list of vertices currently in the queue that are

connected to the edge weight, and then pop the minimum off by looking at the

smallest nonzero bucket. This requires some more caution in keeping track of state

but would also work.

	Warmup with MST and SP
	Conceptual MST and SP
	Shortest Path Algorithm Design

