
CS 61B Sorting
Spring 2018 Exam Prep 13: April 17, 2018

1 Identifying Sorts
Below you will find intermediate steps in performing various sorting algorithms

on the same input list. The steps do not necessarily represent consecutive steps

in the algorithm (that is, many steps are missing), but they are in the correct

sequence. For each of them, select the algorithm it illustrates from among the

following choices: insertion sort, selection sort, mergesort, quicksort (first element

of sequence as pivot), and heapsort.

Input list:1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

(a) Mergesort. One identifying feature of mergesort is that the left and right halves

do not interactwith each other until the very end.

1429, 3291, 7683, 192, 1337, 594, 4242, 9001, 4392, 129, 1000

1429, 3291, 192, 1337, 7683, 594, 4242, 9001, 129, 1000, 4392

192, 1337, 1429, 3291, 7683, 129, 594, 1000, 4242, 4392, 9001

(b) Quicksort. First item was chosen as pivot, so the first pivot is 1429, meaning

the first iteration should break up the array into something like | < 1429 | = 1429

| > 1429

1337, 192, 594, 129, 1000, 1429, 3291, 7683, 4242, 9001, 4392

192, 594, 129, 1000, 1337, 1429, 3291, 7683, 4242, 9001, 4392

129, 192, 594, 1000, 1337, 1429, 3291, 4242, 9001, 4392, 7683

(c) Insertion Sort. Insertion sort starts at the front, and for each item, move to the

front as far as possible. These are the first few iterations of insertion sort so the

right side is left unchanged

1337, 1429, 3291, 7683, 192, 594, 4242, 9001, 4392, 129, 1000

192, 1337, 1429, 3291, 7683, 594, 4242, 9001, 4392, 129, 1000

192, 594, 1337, 1429, 3291, 7683, 4242, 9001, 4392, 129, 1000

(d) Heapsort. This ones a bit more tricky. Basically whats happening is that the

first line is in the middle of heapifying this list into a maxheap. Then we continually

remove the max and place it at the end.

1429, 3291, 7683, 9001, 1000, 594, 4242, 1337, 4392, 129, 192

7683, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 129, 9001

129, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 7683, 9001

2 Sorting

2 Reverse Engineering
Consider the following unsorted array, and the array after an unknown number of

iterations of selection sort as discussed in class (where we sort by identifying the

minimum item and moving it to the front by swapping). Assume no two elements

are equal

For each relation below, write <, >, or ? for insufficient information regarding the

relation between the two objects

1. >, circle is smallest element since its placed in the front.

2. >, on the 5th iteration, the right object (one with the vertical line) is moved

down the array before the left object

3. ?, we dont know whether theyre in the right places or they havent gotten to

swap yet

4. <, infinity is second smallest element after circle

Sorting 3

3 Conceptual Sorts
Answer the following questions regarding various sorting algorithms that weve dis-

cussed in class. If the question is T/F and the statement is true, provide an expla-

nation. If the statement is false, provide a counterexample.

(a) (T/F) Quicksort has a worst case runtime of Θ(NlogN), whereN is the number

of elements in the list that were sorting.

False, quicksort has a worst case runtime of Θ(N2), if the array is partitioned very

unevenly at each iteration.

(b) We have a system running insertion sort and we find that its completing faster

than expected. What could we conclude about the input to the sorting algorithm?

The input is small or the array is nearly sorted. Note that insertion sort has a best

case runtime of Θ(N), which is when the array is already sorted.

(c) Give a 5 integer array such that it elicits the worst case running time for insertion

sort.

A simple example is: 5 4 3 2 1. Any 5 integer array in descending order would work.

(d) (T/F) Heapsort is stable.

False. Stability for sorting algorithms mean that if two elements in the list are

defined to be equal, then they will retain their relative ordering after the sort is

complete. Heap operations may mess up the relative ordering of equal items and

thus is not stable. As a concrete example(taken from Stack Overflow), consider the

max heap: 21 20a 20b 12 11 8 7

(e) Give some reasons as to why someone would use mergesort over quicksort

Some possible answers: mergesort has Θ(NlogN)worst case runtime versus quick-

sorts Θ(N2).Mergesort is stable, whereas quicksort typically isnt. Mergesort can be

highly parallelized because as we saw in the first problem the left and right sides

dont interact until the end. Mergesort is also preferred for sorting a linked list.

4 Sorting

(f) You will be given an answer bank, each item of which may be used multiple

times. You may not need to use every answer, and each statement may have more

than one answer.

A. QuickSort (nonrandom, inplace using Hoare partitioning, and choose the leftmost

item as the pivot)

B. MergeSort

C. Selection Sort

D. Insertion Sort

E. HeapSort

N. (None of the above)

List all letters that apply. List them in alphabetical order, or if the answer is none

of them, use N indicating none of the above. All answers refer to the entire sorting

process, not a single step of the sorting process. For each of the problems below,

assume that N indicates the number of elements being sorted.

A, B, C Bounded by Ω(NlogN)lower bound.

B, E Has a worst case runtime that is asymptotically better than Quicksorts worstcase

runtime.

C In the worst case, performs Θ(N) pairwise swaps of elements.

A, B, D Never compares the same two elements twice.

N Runs in best case Θ(logN)time for certain inputs

	Identifying Sorts
	Reverse Engineering
	Conceptual Sorts

