
Optional. Mark along the line to show your feelings  Before exam: [____________________☺].  
                on the spectrum between  and ☺.  After exam: [____________________☺]. 

UC Berkeley – Computer Science 
CS61B: Data Structures 
 
Final, Spring 2018 

 

This test has 12 questions worth a total of 400 points and is to be completed in 170 minutes. There is also 

an additional 30 point question that is part of midterm 2. The exam is closed book, except that you are 

allowed to use three double sided written cheat sheets (can use front and back on all 3 sheets). No 

calculators or other electronic devices are permitted. Give your answers and show your work in the space 

provided. Write the statement out below in the blank provided and sign. You may do this before the 

exam begins.  

 

“I have neither given nor received any assistance in the taking of this exam.” 

These solutions are probably correct. Let us know if you spot any errors. 

 

 

 

       Signature: ___________________________ 

 

 

 

# Points # Points 

0 1 7 32 

1 44 8 24 

2 33 9 24 

3 46 10 40 

4 0 11 55 

5 13 12 51 

6 37 13 (mt2) 30 

  TOTAL 400 + 30 

Name: __________________________ 

SID: ___________________________ 

Three-letter Login ID: _________ 

Login of Person to Left: _______ 

Login of Person to Right: ______ 

Exam Room: _____________________ 

 

Tips:  

• Hint: Use Math.max instead of if statements to save space on coding problems. 

• There may be partial credit for incomplete answers.  

• There are a lot of problems on this exam. Work through the ones with which you are 

comfortable first. Do not get overly captivated by interesting design issues or complex corner 

cases you’re not sure about. 

• Not all information provided in a problem may be useful, and you may not need all lines. 

• Unless otherwise stated, all given code on this exam should compile. All code has been compiled 

and executed before printing, but in the unlikely event that we do happen to catch any bugs in the 

exam, we’ll announce a fix. Unless we specifically give you the option, the correct answer is 

not ‘does not compile.’ 

• ○ indicates that only one circle should be filled in. 

• □ indicates that more than one box may be filled in. 

• For answers which involve filling in a ○ or □, please fill in the shape completely. 



 UC BERKELEY     

Login: _______ 
 

 2 

0. So it begins (1 point). Write your name and ID on the front page. Write the exam room. Write the IDs 

of your neighbors. Write the given statement and sign. Write your login in the corner of every page. Enjoy 

your free point ☺. 

 

1. Graph basics. a) (12 points). For the graph below, give the DFS preorder, DFS postorder, and BFS 

order using 61A as the source. Assume that DFS and BFS do not restart when they run out of vertices to 

process. You may not need all seven blanks. Assume that ties are broken in alphanumeric order (i.e. the 

edge 61A → 61B would be considered before 61A → 61C). 

 

 

DFS Preorder 

 

61A  61B  169  170  188   61C 

DFS Postorder 

 

169  170  188  61B  61C  61A 

BFS Order 

 

61A  61B  61C  169  170  188 

 

b) (4 points). Give a topological sort for all vertices in the graph from part a. 

 

70  61A  61C  61B  188  170  169 (but many other solutions are valid) 
 

c) (8 points). For the graph below, give the MST in the order that the edges are added by Prim’s algorithm 

starting at the top vertex (containing a circle), and the order added by Kruskal’s algorithm. Identify each 

edge with its weight, e.g. 0 refers to the edge at the top right of the image. You may not need all blanks.  
 

 

Edges in MST in order added by Prim’s 

 

0  -1000  1  2  3  4  5 
 

 

 

 

Edges in MST in order added by Kruskal’s 

 

-1000  0  1  2  3  4  5 



CS61B FINAL, SPRING 2018 

Login: _______ 
 

 3 

d) (4 points). For the graph from part c, do the edges of the MST change if we add 1000 to every edge 

weight? Do not worry about edge order. 

 

○ Yes   ● No  

 

e) (8 points). For the graph below, let x be the unknown weight of edge DE. Can the marked edges (in 

bold) be a valid minimum spanning tree? If so, for what values of x? If not, why not? 

 

 

 
●Valid MST, range of valid x:  x is ≥ 2 
 
 
 
○ Never a valid MST, because: _________________________ 
  
_____________________________________________________________ 
 

f) (8 points). For the graph below (same as part e), can the marked edges (in bold) be a shortest paths tree 

rooted at B? If so, for what values of x? If not, why not? 

 

 
● Valid SPT rooted in B, range of valid x:    x is ≥ 3 
 
 
 
 
○ Never a valid SPT rooted in B, because: __________ 
  
_____________________________________________________________ 
 

 

  



 UC BERKELEY     

Login: _______ 
 

 4 

2. Sorting. 

a) (8 points). Suppose that we have an initial array of unsorted symbols: [@, #, $, %, &, *], where 

no two symbols are considered equal. Suppose that we are in the middle of insertion sort and have 

reached the state where the array contains [&, #, $, @, %, *]. 

 

Mark each of the following propositions as true, false, or not enough information (NEI). 

 

○ T     ○ F    ● NEI & is the smallest element of the array. 

○ T     ○ F    ● NEI * is the largest element of the array. 

● T     ○ F    ○ NEI & < # 

○ T     ● F    ○ NEI % < @ 

 

b) (8 points). Suppose we have the array [6, 1, 4, 7, 3, 2, 5, 8]. Suppose we use 6 as the pivot, and partition 

using Tony Hoare’s partitioning scheme.  

 

Give the array immediately after the first swap:  6 1 4 5 3 2 7 8 

 

Give the array after the entire partition operation is complete: 2 1 4 5 3 6 7 8 

 

c) (6 points). Given an array, suppose that x < y, and that x appears to the right of y. What happens to the 

inversion count if we swap x and y? Fill in completely all boxes that are possible. 

 

■ It can decrease.  □ It can increase.  □ It can stay the same. 

 

d) (6 points). What happens to the inversion count if we min-heapify an array using bottom up 

heapification? Fill in all that are possible. 

 

■ It can decrease.  □ It can increase.  ■ It can stay the same. 

 

This is just the same as part c, but the items can also be all duplicates in which case inversion count doesn’t 
change. 

 

e) (5 points). A 61B student studying for his final observes that the time for the get operation in a hash 

table is constant, so long as the items in a hash table are evenly distributed. Inspired, the student proposes 

a sort called HashSort that works very simply: the HashSort class contains a single instance variable 

HashMap<int[], int[]> that maps any integer array to a sorted version of that array. For example, 

[8, 1, 21772, 8, 2] would map to [1, 2, 8, 8, 21772]. When a user calls HashSort(x), the 

method simply returns the result of calling .get(x) on its HashMap instance variable. 

 

The student notes that this would take infinite memory to store all possible arrays, but claims that if you 

somehow had infinite memory, the algorithm would have constant runtime for an input array of length N. 

Is the student correct that HashSort is constant time? If yes, explain why the puppy, cat, dog bound does 

not apply. If not, explain why the student is wrong. 

 

○ Yes /  ● No. Explanation: Computing the hashcode takes time N.  



CS61B FINAL, SPRING 2018 

Login: _______ 
 

 5 

3. Back to the First Half of the Semester. 

 

a) (16 points). Given two IntLists defined as follows, fill in the append method below so that it non-

destructively creates a new IntList with y appended to the end of x. For example, if x is 3 → 4 → 5, 

and y is 9 → 10 → 11, then the result should be 3 → 4 → 5 → 9 → 10 → 11. You may not need all lines. 

 

public class IntList { 
    public int first; 
    public IntList rest; 
    public IntList(int f, IntList r) { first = f; rest = r; } 
 
    public static IntList append(IntList x, IntList y) { 
        if (x == null) { 
            return y; 
        } else { 
            return new IntList(x.first, append(x.rest, y)); 
            _____________________________________________________ 
        } 
    } 
} 
b) (16 points). Suppose we modify our IntList class so that it can be iterated over. Fill in the code 

below so that iteration works correctly. You do not need to complete part a correctly to do this problem. 

You may not need all lines. 

public class IntList implements Iterable<Integer> { 
    … // same as in part a 
    @Override 
    public Iterator<Integer> iterator() { 
        return new IntListIterator(this); 
    } 
    public static class IntListIterator implements Iterator<Integer> { 
        private IntList p; 
        public IntListIterator(IntList il) { 
            p = il; 
        } 
        public boolean hasNext() { 
            return p != null; 
        } 
        public Integer next() { 
            int rval = p.first; 
            p = p.rest; 
            return rval; 
        } 
    } 

} 



 UC BERKELEY     

Login: _______ 
 

 6 

c) (6 points). Suppose we have an IntList from part b called L. There are three ways to iterate over L, 

shown below. Assume that print is a method that simply calls System.out.print. 

 

for (int x : L) { 
  print(x); 
} 

Iterator<Integer> it   
  = L.iterator(); 
 
while (it.hasNext()) {   
  print(it.next());  
} 

IntListIterator it =  
  (IntListIterator)  
  L.iterator(); 
 
while (it.hasNext()) { 
  print(it.next()); 
} 

One.java                                Two.java                                             Three.java 

 

Suppose we changed our IntListIterator class in IntList from public to private. For each of 

our four files, what happens? Fill in one bubble per line. 

 

IntList.java: ○Fails to compile  ● Compiles 

One.java:  ○Fails to compile  ○ Compiles but works incorrectly  ● Compiles and works correctly 

Two.java: ○Fails to compile  ○ Compiles but works incorrectly  ● Compiles and works correctly 

Three.java:  ●Fails to compile  ○ Compiles but works incorrectly  ○ Compiles and works correctly 

 

d) (8 points). Suppose we have a software system that makes a huge number of calls to a very large 

ArrayList<Integer>. We want to squeeze every last bit of performance out of the system. To 

accomplish this, an engineer suggests building and switching to our own special purpose IntArrayList 

class that is exactly the same as ArrayList, except that it will use an int[] to store the data. This is 

contrast to the ArrayList<Integer> class, which uses an Integer[] array. 

 

In terms of practical runtime and space usage, would we expect our IntArrayList to perform better, 

almost exactly the same, or worse? 

 

Runtime of IntArrayList:       ● Better      ○ No measurable difference         ○ Worse 

 

Brief justification for runtime:  Autoboxing and autounboxing operations take a non-trivial amount of 

time. 

 

Space usage of IntArrayList: ● Better      ○ No measurable difference          ○ Worse 

 

Brief justification for space: Integer objects take much more space to store than ints. 

 

4. PNH (0 points). When was the oldest surviving film recorded? Name something that happens in it. 

 

1885. Someone spins around in a circle.  



CS61B FINAL, SPRING 2018 

Login: _______ 
 

 7 

5. Hash Codes (13 points). Suppose we have the class defined below. 

 

public class SneakySnake { 
    public static final String UUIDString = "64de13c7fc79154d0570a12f268df"; 
    private int seed; 
    public Random random; 
 
    public SneakySnake(int s) { seed = s; random = new Random(seed); } 
 
    @Override 
    public boolean equals(Object other) { 
        SneakySnake o = (SneakySnake) other; 
        return this.UUIDString.equals(o.UUIDString) && this.seed == o.seed; 
    } 
 
    @Override 
    public int hashCode() { 
       ... 
    } 
} 
 

For each of the hashCode() implementations below, fill in whether the implementation is valid, valid 

but slow, or invalid. A hashcode is valid if the methods of a hash table implementation (e.g. HashSet) 

always return the correct results. A hashcode is considered “valid but slow” if hash table operations are 

guaranteed to be correct, but are asymptotically much slower than otherwise possible with a better hash 

code. A hashcode is invalid if the code either doesn’t compile, or some operations don’t work as expected. 

 

hashCode() implementation valid valid but slow invalid 

return UUIDString; ○ ○ ● 

return UUIDString.hashCode(); ○ ● ○ 
return seed; ● ○ ○ 

return random.nextInt(); ○ ○ ● 

Random hashcodeRand = new Random(10); 
return hashcodeRand.nextInt(); 

○ ● ○ 

 

 

Small Area of Total Peace and Tranquility. Please, enjoy your stay.  



 UC BERKELEY     

Login: _______ 
 

 8 

6. More Graphs! As usual, throughout this problem, assume that our graphs have no edges that connect 

a node to itself, and that there is at most one edge between any two nodes. 

 

a) (25 points). For each of the following propositions about graphs, mark Always True, Sometimes True, 

or Always False.  

 

○ AT   ● ST    ○ AF  A* finds a correct shortest path (if it exists) from a source vertex to the goal 

vertex. 

● AT   ○ ST    ○ AF Suppose we have a goal node in mind. BFS finds a correct shortest path (if it 

exists) from a source vertex to that goal vertex in an unweighted graph. 

○ AT   ● ST    ○ AF The MST of a graph contains the largest edge in a graph. 

● AT   ○ ST    ○ AF Given a valid topological sort, the last vertex has no outgoing edges. 

○ AT   ● ST    ○ AF The middle vertex in a topological sort of 3 or more vertices has no edge going 

into it. 

● AT   ○ ST    ○ AF Given a graph with all positive edges except one or more negative edges 

leaving the start node, Dijkstra’s algorithm finds a correct shortest paths tree. 

○ AT   ● ST    ○ AF Consider a variant of Dijkstra’s algorithm DAV1 that tries to find a target node 

and stops as soon as the target node is enqueued. DAV1 finds a correct 

shortest path to the target on a graph with no negative edges. 

● AT   ○ ST    ○ AF Consider a variant of Dijkstra’s algorithm DAV2 that tries to find a target node 

and stops as soon as the target node is dequeued. DAV2 finds a correct 

shortest path to the target on a graph with no negative edges. 

 

 

b) (12 points). For this problem, consider only graphs with non-negative edge weights. 

 

Naively, you’d assume that storing the shortest paths from a start vertex to every other vertex would 

require storing V - 1 lists, one for each target vertex, requiring O(V2) space. However, we proved in lecture 

that the shortest paths actually form a tree, allowing us to store a single “shortest paths tree” in O(V) space.  

 

Suppose that we instead want to store the second shortest paths from a start vertex to every other vertex 

for which a second shortest path exists. Do the resulting edges form a tree? If yes, explain why. If not, 

give a counter-example.  

 

○ Yes, there exists some sort of second-shortest-paths-tree because: _______________________ 

_______________________________________________________________________________ 

 

● No, because (include drawing with no more than 5 nodes):  

 

No, consider A – B. The second shortest path from A → B is A→C→B, and second shortest path from 

                       \    /    A→C is A→B→C. Together, A→C→B and A→B→C do not form a tree. 

                        C 

            



CS61B FINAL, SPRING 2018 

Login: _______ 
 

 9 

7. Can you do that? For each of the following problems, select Yes and provide an explanation OR select 

No and provide a counterexample (for full credit) or an explanation (for partial credit). 

 

a) (10 points). One way to implement insertion sort as described in class is to call travel(0), 

travel(1), travel(2), …, travel(N-1), in that order, where travel(i) is a helper function where 

the chosen item swaps itself with its left neighbor repeatedly as long as its left neighbor is greater than it. 

In other words, each item is the traveler exactly once, and traveling means heading as close to the front as 

possible. Suppose that we instead call travel in the reverse order, e.g. travel(N-1), travel(N-2), …, 

travel(0). Does this also work? Assume that the travel operation is exactly as above. If yes, explain 

why. If no, give a counter-example. 
 

○ Yes, because: ______________________________________________________________ 

 

● No, counter-example: 3 0 1 2        here, 2 gets stuck behind the 1 

 

b. (12 points). Consider a new MST algorithm: Pruskal's Algorithm. For Pruskal's algorithm, we assume 

a connected weighted undirected graph. The algorithm is the following: Create a Set<Edge>. For each 

vertex in the graph, find the cheapest edge connected to it, and add this edge to the Set. Repeat until all 

vertices have been considered and return the Set. Does this algorithm correctly return the MST for all 

possible graphs? If so, explain why. If not, give a counter example. Assume edge weights are unique. 

 

○ Yes, because: ______________________________________________________________ 

 

● No, counter-example (no more than 5 nodes): 

        B 

     1 /   \ 4 

     A      C ---- D 

                   2  

4 is not anybody’s cheapest edge, but must be part of MST. 

c. (10 points). Suppose we want to create a new class called MutationSafeHeapMinPQ. 

 

public class MutationSafeHeapMinPQ<K extends Comparable<K>> { 
    private K[] items; 
    public void add(K item) { ... } 
    public K min() { ... } 
    public K removeMin() { ... } 
}  

The only difference between this and the HeapMinPQ from lecture is that our new class’s reporting 

methods (min and removeMin) must always return the correct result, even if previously added items in 

the priority queue are modified. In other words, it handles mutable objects perfectly fine, even if they 

change while in the PQ. 

 

Is it possible to implement such a class? If so, briefly describe how. If not, explain why not. Don’t worry 

about runtime. 

● Yes:  Reheapify at the beginning of each call to min() and removeMin() 

○ No, because:  ________________________________________________________________ 



 UC BERKELEY     

Login: _______ 
 

 10 

8. Weird Sorts. 

a) (12 points). Suppose we create a new sorting algorithm called PartitionHybridSort(input, lo, 
hi, subsort) where input is an input array of integers, lo is the lowest index in the array to be sorted, 

hi is the highest index in the array to be sorted, and subsort is the sorting routine to use in step 3: 

 

1. If hi - lo <= 1, return. 

2. Partition around input[lo] (i.e. the leftmost item of the current subproblem). 

3. Use subsort to sort the left and right subproblems. 

 

Give the worst case runtime for the function calls below. Give your answer as a function of only N in 

big theta notation. Each represents a different choice of subsort. For example, InsertionSort is a 

reference to an insertion sort implementation for integer arrays.  

 

PartitionHybridSort(input, 0, N, InsertionSort) Θ(N2) 

PartitionHybridSort(input, 0, N, Mergesort) Θ(N log N) 

PartitionHybridSort(input, 0, N, LSDSort) Θ(N) 

PartitionHybridSort(input, 0, N, PartitionHybridSort) Θ(N2) 

 

b) (12 points). In lecture, our implementation of LSD sort used counting sort as subroutine to sort by each 

digit. Suppose that we used Mergesort as a subroutine instead of counting sort. Let’s call this new 

algorithm LSDMergesort.  

 

The Mergesort used as a subroutine by LSDMergesort is exactly like regular Mergesort, except that its 

merge operation compares only one digit of an input to decide which is larger. For example, the merge 

operation would ordinarily consider 361 to be less than 410, but if we’re sorting on the final digit, it will 

consider 361 to be larger than 430 (since 1 > 0). 

 

Just like regular LSD sort, LSDMergesort would sort by the last digit, then second to last digit, and so 

forth. We can define LSDQuicksort in a similar way. Assume our LSDQuicksort uses shuffling, always 

picks the leftmost pivot, and uses Tony Hoare’s partitioning scheme. 

 

For each of these two new sorts, give their worst case runtime in terms of N and W, where W is the 

number of digits in each key. For simplicity, assume all keys have the same number of digits. Don’t worry 

about the alphabet size R. Also state whether or not they always return the right answer, and give an 

explanation for why. 

 
 Worst case 

runtime 

Always works 

correctly?  

Explanation for why it always works or not. 

LSDMergesort Θ(WN log N) ● Yes  ○ No Mergesort is stable. 

LSDQuickSort Θ(WN 2) ○ Yes  ● No Quicksort is unstable. 

 

  



CS61B FINAL, SPRING 2018 

Login: _______ 
 

 11 

9. Dijkstra’s Runtime (24 points). In lecture, our cost model for Dijkstra’s algorithm was to count the 

number of add, changePriority, and removeMin calls. We showed that we make V calls to add, O(E) 

calls to changePriority, and O(V) removeMin calls. Using a binary heap-based PQ that allows 

priority updates and can handle all three operations in O(log V) time, Dijkstra’s algorithm therefore 

requires O(E log V + V log V) time. 

 

For each of the priority queue implementations below, give a tight asymptotic runtime bound for each 

add, changePriority and removeMin operation, and also provide the total runtime for Dijkstra’s 

algorithm. Assume that our graph has vertices numbered from 0 to V - 1. 

 

The approaches to consider are: 

 

1. TrinaryMinHeapPQ: Exactly the same as the PQ used in lecture (and described above), except that 

nodes can have up to 3 children instead of 2. 

2. UnorderedArrayPQ: The PQ is a Double[] array. The ith entry in the array holds the priority value of 

the ith vertex stored as a Double. Any vertices that have been removed have a null value. Adding a new 

vertex increases the size of the array by 1. 

3. OrderedLinkedListPQ: Each node in the linked list holds a vertex number and a priority value as a 

double. Items are stored in increasing order of priority. 

 

Give your answers in terms of E and V. Do not simplify expressions involving E and V, e.g. don’t 

simplify O(E log V + V log V) into O(E log V). 

 

 TrinaryMinHeapPQ UnorderedArrayPQ OrderedLinkedListPQ 
add O(log V) O(V) O(V) 

changePriority O(log V) O(1) O(V) 

removeMin O(log V) O(V) O(1) 

Total runtime O(E log V + V log V) O(V2+E) O(V2 + EV) 

 

10. By the Numbers (40 points). 

 

Give the best and worst case number of compareTo calls needed for each task below. Give exact values! 

Do not include calls to equals, usages of primitive comparison operators, etc. The answer fomay be zero. 

 

Best    Worst 

2 3   Solving puppy, cat, dog for N = 3. 

4 10 Insertion sorting 5 numbers. 

6 10 Inserting 5 numbers into an initially empty binary search tree. 

0 0 Finding the successor (smallest item larger than) the root in a BST with 7 items. 

20 49 Merging a sorted array of size 20 with a sorted array of size 30 to yield a sorted result. 

6 8 Bottom up heapification of an array of 7 items.  

1 3 Binary searching an ordered array of 7 numbers for a key. 

0 0 Using counting sort to sort 52 cards by suit (heart, diamond, spade, club). 

 



 UC BERKELEY     

Login: _______ 
 

 12 

11. Sheep Herding. You are a shepherd and have found your way to the heart of Grigometh’s maze. 

Your prize awaits: a line of golden sheep stands before you. You may take as many as you wish, as long 

as you follow the rules. Your goal is to take the sheep with the greatest total value. The rules are: 

 

1. You must take the first sheep. 

2. Walk forward between A and B spots, inclusive. If there are no sheep left, you are done. Otherwise, 

repeat step 1, where the sheep you just walked to is the new first sheep. 

 

Four examples follow: 

• values = {1, 0, 1, -1, 1, 0, 10}, A = 2, B = 3, best = 13 

• values = {0, 2}, A = 2, B = 3, best = 0 

• values = {5, 2, -3, 2, 2, 10, 5, 3, 3, 4}, A = 3, B = 5, best = 19 
• values = {2, 1, -3, 6, 8, -2, -1, 4}, A = 2, B = 3, best = 11 

 

Throughout this problem, assume that the correct answer is always small enough to fit into an integer,  

and that B ≥ A > 0. Note that A cannot be zero, otherwise we could keep picking the same sheep. 

 

a) (8 points). To test your understanding, suppose we have values = {5, 2, -3, 2, 2, 10},    
A = 2, and B = 3, compute best.  

 

best: 17 

 

b. (20 points). Fill in the naive recursive solution below. 

 

public static int maxSheepNaive(int[] values, int A, int B) { 
    return maxSheepNaiveHelper(values, A, B, 0); 
} 
 
/** Returns the max value if we take sheep with values[c] as well as the 
  * subsequent sheep(s) with maximum total value according to the rules. */ 
public static int maxSheepNaiveHelper(int[] values, int A, int B, int c) { 
    if (c >= values.length) { 
        return 0; 
    } 
    int best = Integer.MIN_VALUE; 
    for (int s = A;_s <= B; s += 1) { 
        int val = values[c] + maxSheepHelperNaive(values, A, B, c + s); 
        best = Math.max(best, val); 
    }   // hint: For particularly concise code, use Math.max somewhere. 
    return best; 
} 
 

 

 



CS61B FINAL, SPRING 2018 

Login: _______ 
 

 13 

c) (20 points). Unfortunately, the solution from part b can be exponential in runtime. Memoization is one 

way to speed things up considerably, but an even better approach is to use dynamic programming. The 

tricky part is deciding what subproblems you need to solve. 

 

Your goal: Come up with a useful subproblem definition such that Q(N) is the solution to each 

subproblem, and the solution to the entire problem can be easily calculated given all Q(N). 

 

Describe your subproblem briefly in English, and fill in your values for Q(N) in the table given below. 

Hint if you’re stuck: Consider drawing a DAG, where an edge from i to j indicates that subproblem i is 

useful for solving subproblem j. 

 

Description of Q(N) (optional, ungraded): max total possible starting from N 

 

values = {2, 1, -3, 6, 8, -2, -1, 4}, A = 2, B = 3, best = 11 
 

values[N] 2 1 -3 6 8 -2 -1 4 

Q(N) 11 13 9 8 12 2 -1 4 

 

Note: Only your table values will be graded for part c! 

 

DAG drawing (optional, ungraded): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d) (7 points). Give the runtime of the dynamic programming solution in big Theta notation in terms of 

N, A, and B. You may not need all variables. 

 

Θ(N(B-A)) 

  



 UC BERKELEY     

Login: _______ 
 

 14 

12. IntSibTree. During lecture, we talked about an alternate way of implementing a tree known as a 

sibling tree. In a sibling tree, each node stores an item, a link to its first child (if any), and a link to its first 

sibling (if any). For example, the abstract tree given on the left would be represented as the structure on 

the right. Here i means item, s means sibling, and c means child. For this problem, assume that 

our tree contains only non-negative integers!  

 
a) (10 points). Fill in the largestSibling method in the IntSibTree class below. For example, if 

called on the node containing 2, the method would return 4. You may not need all lines. 

public class IntSibTree { 
  public int item; 
  public IntSibTree sibling;   // link to first sibling 
  public IntSibTree child;     // link to first child 
  /** Returns largest item from siblings of t (including t) or 0 if null. */  
  public static int largestSibling(IntSibTree t) { 
      if (t == null) { return 0; } 
      ____________________________________________________ 

      ____________________________________________________ 

      return Math.max(t.item, largestSibling(t.sibling)); 
  } 

  public static int secondLargestSibling(IntSibTree t) { // code not shown } 
} 
b) (13 points). Suppose we want to add a post order method to the IntSibTree class that performs a 

post order visit of the IntSibTree using the Visitor pattern from lecture. Fill in the method below. 

You may not need all lines. The Visitor interface is defined below the method. 

 

public static void postOrder(IntSibTree t, Visitor v) { 

    if (t == null) { __________________ }  // Note: postOrder is part of 

    postOrder(t.child, v);_______________  // the IntSibTree class. 

    v.visit(t);__________________________  // For above graph, should visit  
    postOrder(t.sibling, v);               // in order 2, 7, 6, 4, 1, 3, 5. 

} 

public interface Visitor {                 // The Visitor interface is not 
    public void visit(IntSibTree t);       // part of the IntSibTree class. 
}  



CS61B FINAL, SPRING 2018 

Login: _______ 
 

 15 

c) (28 points). Let the “max path” be the path that has the maximum total weight in the entire tree, where 

the weight of a path is defined as the sum of the integers along the path. For example, the max path for 

the tree on the left has weight 70, and the tree on the right has max path weight 110 (and doesn’t include 

the root). An empty tree has a max path weight of zero. 

 
 

Fill in the MaxPathFinder class such that the code below prints the weight of the best path. Your 

visitor may be destructive, but is not required to be destructive. You may not need all lines. 

THIS PROBLEM IS HARD. DON’T SPEND TOO LONG ON IT! 

 

  Visitor v = MaxPathFinder(); 
  IntSibTree.postOrder(ist, v);  //ist is some IntSibTree 
  System.out.println(v.result());//prints 70 for left example, 110 for right 
 
public class MaxPathFinder implements Visitor { 
    int bestPathSum; 
 
    public MaxPathFinder() { 
        bestPathSum = 0; 
    } 
 
    public void visit(IntSibTree t) { 

        int largest = t.largestSibling(t.child); 
        int secondLargest = t.secondLargestSibling(t.child); 
        int subTreeTotal = largest + t.item; 
        int thisBestPathSum = largest + secondLargest + t.item; 
        t.item = subTreeTotal; 
        bestPathSum = Math.max(bestPathSum, thisBestPathSum);     
    } 

    public int result() { 
        return bestPathSum;        
    } 
} // And now you’re done! Unless you want another crack at Flight…  



 UC BERKELEY     

Login: _______ 
 

 16 

13. (30 points). Flight Planning. This problem will be scored under two special rules: 

1. Your score for this problem does not count towards your final exam score, but will instead be added to 

your score on problem 9 of midterm 2. If that total exceeds 30 points, the overflow is gold points. 

2. If you fill in the bubble below, we’ll give you 10% credit instead of grading your answer. 

  

○ I’ll just take 10% credit, please don’t grade my answer. 

 

Consider the SNRPLTE (shortest no-repeats-path less than exists) method below. It returns true if there 

exists a path in the graph from s to t that: 

1. Has total weight less than or equal to W. 

2. Has no repeated vertices, i.e. each vertex appears at most once. 

 

/** Returns true if there is a path from s to t in G with weight <= W. */ 
public static boolean SNRPLTE(Graph G, int s, int t, int W) { ... } 
 

For example, SNRPLTE returns true on the graph to the right  

for s = 0, t = 2, and any value of W that is greater than 

or equal to 0. SNRPLTE handles undirected and directed edges. 

 

Suppose that the runtime of SNRPLTE is Θ(F(V, E)), where 

F(V, E) is some unknown function that is Ω(V + E). 

 

Given an undirected unweighted graph G, where each node is an airport, and each edge indicates that there 

exists a flight between the two airports, suppose we want to know if there exists a path that visits every 

airport exactly once, which we’ll call a world tour. In other words, you want to write the method below: 

 

/** Returns true if there exists a world tour of the graph G. */ 
public static boolean WTE(Graph G) { ... } // G is unweighted and undirected 
 

Give a concise but thorough explanation of how you could solve WTE for a given graph using SNRPLTE. 

Your algorithm must have runtime Θ(F(V, E)), i.e. the same as SNRPLTE. Give your algorithm as a 

numbered list of steps. You may not modify the SNRPLTE method in any way. 

 

1. Given G, create a new graph γ with the following properties: 

a. Copies of every vertex and edge in G as well as two new vertices s and t. 

b. New directed edges from s to every vertex that was copied from G. 

c. New directed edges from every vertex that was copied from G to t. 

d. Set all edge weights to -1. 

 

2. Return the result of SNRPLTE(γ, s, t, -(V+1)) 

 

Why this works: Let V be the number of vertices in G. A shortest path with no repeats on γ of length (V 

– 1) + 2 would be the same as a world tour which must have V – 1 edges. Such a path γ would have total 

weight –(V+1). 

 

Thus we simply need to return the result of SNRPLTE(γ, s, t, -(V+1)) 


